Suppr超能文献

DM3Loc:基于多头自注意力机制的多标签 mRNA 亚细胞定位预测与分析。

DM3Loc: multi-label mRNA subcellular localization prediction and analysis based on multi-head self-attention mechanism.

机构信息

Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO 65203, USA.

Center for Information Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.

出版信息

Nucleic Acids Res. 2021 May 7;49(8):e46. doi: 10.1093/nar/gkab016.

Abstract

Subcellular localization of messenger RNAs (mRNAs), as a prevalent mechanism, gives precise and efficient control for the translation process. There is mounting evidence for the important roles of this process in a variety of cellular events. Computational methods for mRNA subcellular localization prediction provide a useful approach for studying mRNA functions. However, few computational methods were designed for mRNA subcellular localization prediction and their performance have room for improvement. Especially, there is still no available tool to predict for mRNAs that have multiple localization annotations. In this paper, we propose a multi-head self-attention method, DM3Loc, for multi-label mRNA subcellular localization prediction. Evaluation results show that DM3Loc outperforms existing methods and tools in general. Furthermore, DM3Loc has the interpretation ability to analyze RNA-binding protein motifs and key signals on mRNAs for subcellular localization. Our analyses found hundreds of instances of mRNA isoform-specific subcellular localizations and many significantly enriched gene functions for mRNAs in different subcellular localizations.

摘要

信使 RNA(mRNA)的亚细胞定位是一种普遍存在的机制,为翻译过程提供了精确和高效的控制。越来越多的证据表明,这一过程在多种细胞事件中起着重要作用。用于 mRNA 亚细胞定位预测的计算方法为研究 mRNA 功能提供了一种有用的方法。然而,用于 mRNA 亚细胞定位预测的计算方法很少,其性能还有改进的空间。特别是,仍然没有可用的工具来预测具有多个定位注释的 mRNA。在本文中,我们提出了一种用于多标签 mRNA 亚细胞定位预测的多头自注意力方法 DM3Loc。评估结果表明,DM3Loc 总体上优于现有的方法和工具。此外,DM3Loc 还具有分析 RNA 结合蛋白基序和 mRNA 上关键信号用于亚细胞定位的解释能力。我们的分析发现了数百种 mRNA 同工型特异性亚细胞定位的实例,以及许多在不同亚细胞定位中显著富集的基因功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea46/8096227/ea6f6a259f7a/gkab016fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验