Suppr超能文献

两年后的AlphaFold:验证与影响。

AlphaFold two years on: Validation and impact.

作者信息

Kovalevskiy Oleg, Mateos-Garcia Juan, Tunyasuvunakool Kathryn

机构信息

Google DeepMind, London N1C 4DN, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2315002121. doi: 10.1073/pnas.2315002121. Epub 2024 Aug 12.

Abstract

Two years on from the initial release of AlphaFold, we have seen its widespread adoption as a structure prediction tool. Here, we discuss some of the latest work based on AlphaFold, with a particular focus on its use within the structural biology community. This encompasses use cases like speeding up structure determination itself, enabling new computational studies, and building new tools and workflows. We also look at the ongoing validation of AlphaFold, as its predictions continue to be compared against large numbers of experimental structures to further delineate the model's capabilities and limitations.

摘要

自AlphaFold首次发布两年以来,我们见证了它作为一种结构预测工具被广泛采用。在此,我们讨论一些基于AlphaFold的最新工作,特别关注其在结构生物学领域的应用。这包括加速结构确定本身、开展新的计算研究以及构建新工具和工作流程等用例。我们还审视了AlphaFold正在进行的验证情况,因为其预测结果仍在与大量实验结构进行比较,以进一步明确该模型的能力和局限性。

相似文献

1
AlphaFold two years on: Validation and impact.
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2315002121. doi: 10.1073/pnas.2315002121. Epub 2024 Aug 12.
2
AlphaFold Models of Small Proteins Rival the Accuracy of Solution NMR Structures.
Front Mol Biosci. 2022 Jun 13;9:877000. doi: 10.3389/fmolb.2022.877000. eCollection 2022.
3
The Phenix-AlphaFold webservice: Enabling AlphaFold predictions for use in Phenix.
Protein Sci. 2024 May;33(5):e4992. doi: 10.1002/pro.4992.
4
The impact of AlphaFold Protein Structure Database on the fields of life sciences.
Proteomics. 2023 Sep;23(17):e2200128. doi: 10.1002/pmic.202200128. Epub 2022 Nov 27.
5
AlphaFold predictions are valuable hypotheses and accelerate but do not replace experimental structure determination.
Nat Methods. 2024 Jan;21(1):110-116. doi: 10.1038/s41592-023-02087-4. Epub 2023 Nov 30.
6
Accelerating crystal structure determination with iterative AlphaFold prediction.
Acta Crystallogr D Struct Biol. 2023 Mar 1;79(Pt 3):234-244. doi: 10.1107/S205979832300102X. Epub 2023 Feb 27.
7
An outlook on structural biology after AlphaFold: tools, limits and perspectives.
FEBS Open Bio. 2025 Feb;15(2):202-222. doi: 10.1002/2211-5463.13902. Epub 2024 Sep 23.
8
DPAM: A domain parser for AlphaFold models.
Protein Sci. 2023 Feb;32(2):e4548. doi: 10.1002/pro.4548.
9
The integration of AlphaFold-predicted and crystal structures of human -3-hydroxy-l-proline dehydratase reveals a regulatory catalytic mechanism.
Comput Struct Biotechnol J. 2022 Jul 18;20:3874-3883. doi: 10.1016/j.csbj.2022.07.027. eCollection 2022.
10
Using AlphaFold Predictions in Viral Research.
Curr Issues Mol Biol. 2023 Apr 21;45(4):3705-3732. doi: 10.3390/cimb45040240.

引用本文的文献

1
Integrating AlphaFold2 models and clinical data to improve the assessment of Short Linear Motifs (SLiMs) and their variants' pathogenicity.
PLoS Comput Biol. 2025 Aug 4;21(8):e1012829. doi: 10.1371/journal.pcbi.1012829. eCollection 2025 Aug.
2
Adaptive gradient scaling: integrating Adam and landscape modification for protein structure prediction.
BMC Bioinformatics. 2025 Jul 1;26(1):161. doi: 10.1186/s12859-025-06185-2.
3
: a website for fast ensemble modeling optimizing the fit of or user-supplied protein structures with flexible regions to SAXS data.
J Appl Crystallogr. 2025 May 29;58(Pt 3):1034-1049. doi: 10.1107/S1600576725003590. eCollection 2025 Jun 1.
5
AI-based quality assessment methods for protein structure models from cryo-EM.
Curr Res Struct Biol. 2025 Feb 2;9:100164. doi: 10.1016/j.crstbi.2025.100164. eCollection 2025 Jun.
6
Molecular Origami: Designing Functional Molecules of the Future.
Molecules. 2025 Jan 9;30(2):242. doi: 10.3390/molecules30020242.
7
Prediction of peptide structural conformations with AlphaFold2.
bioRxiv. 2025 Jan 4:2024.12.03.626727. doi: 10.1101/2024.12.03.626727.
8
Protein folding: From physics-chemical rules and cellular machineries of protein quality control to AI solutions.
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2411135121. doi: 10.1073/pnas.2411135121. Epub 2024 Aug 12.

本文引用的文献

1
Generalized biomolecular modeling and design with RoseTTAFold All-Atom.
Science. 2024 Apr 19;384(6693):eadl2528. doi: 10.1126/science.adl2528.
2
AlphaFold predictions are valuable hypotheses and accelerate but do not replace experimental structure determination.
Nat Methods. 2024 Jan;21(1):110-116. doi: 10.1038/s41592-023-02087-4. Epub 2023 Nov 30.
3
Predicting multiple conformations via sequence clustering and AlphaFold2.
Nature. 2024 Jan;625(7996):832-839. doi: 10.1038/s41586-023-06832-9. Epub 2023 Nov 13.
5
Systematic identification of conditionally folded intrinsically disordered regions by AlphaFold2.
Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2304302120. doi: 10.1073/pnas.2304302120. Epub 2023 Oct 25.
6
Accurate proteome-wide missense variant effect prediction with AlphaMissense.
Science. 2023 Sep 22;381(6664):eadg7492. doi: 10.1126/science.adg7492.
7
Clustering predicted structures at the scale of the known protein universe.
Nature. 2023 Oct;622(7983):637-645. doi: 10.1038/s41586-023-06510-w. Epub 2023 Sep 13.
8
Uncovering new families and folds in the natural protein universe.
Nature. 2023 Oct;622(7983):646-653. doi: 10.1038/s41586-023-06622-3. Epub 2023 Sep 13.
9
The midnolin-proteasome pathway catches proteins for ubiquitination-independent degradation.
Science. 2023 Aug 25;381(6660):eadh5021. doi: 10.1126/science.adh5021.
10
Predicted models and CCP4.
Acta Crystallogr D Struct Biol. 2023 Sep 1;79(Pt 9):806-819. doi: 10.1107/S2059798323006289. Epub 2023 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验