Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China.
Int J Biol Macromol. 2024 Oct;278(Pt 2):134372. doi: 10.1016/j.ijbiomac.2024.134372. Epub 2024 Aug 10.
Bone tissue engineering scaffolds are an important means of repairing bone defects, but current solutions do not adequately simulate complex extracellular microenvironment fibrous structures and adjustable mechanical properties. We use template-assisted fiber freeze-shaping technology to construct silk fibroin nanofiber aerogels (SNFAs) with nanofibrous textures and adjustable mechanical properties. The parallel arranged channels, the pores, electrospun nanofibers, and silk protein conformation together constitute the hierarchical structure of SNFAs. Especially, the introduced electrospun nanofibers formed a biomimetic nanofibrous texture similar to the extracellular matrix, providing favorable conditions for cell migration and tissue regeneration. In addition, Young's modulus of SNFAs can be adjusted freely between 7 and 88 kPa. The rationally designed 3D architecture makes SNFAs perfectly mimic the fiber structure of the extracellular matrix and can adjust its mechanical properties to match the bone tissue perfectly. Finally, fiber-containing SNFAs observably promoted cell adhesion, proliferation, and differentiation, accelerating the bone repair process. The bone density in the defect area reached 0.53 g/cm and the bone volume/total volume (BV/TV) ratio reached 57 % at 12 weeks, respectively. It can be expected that this kind of tissue engineering scaffold with highly simulating extracellular matrix microenvironment and adjustable mechanical properties will possess broad prospects in the field of bone repair.
骨组织工程支架是修复骨缺损的重要手段,但目前的解决方案不能充分模拟复杂的细胞外微观环境纤维结构和可调节的机械性能。我们使用模板辅助纤维冷冻成型技术构建具有纳米纤维纹理和可调节机械性能的丝素蛋白纳米纤维气凝胶(SNFAs)。平行排列的通道、孔、静电纺纳米纤维和丝蛋白构象共同构成了 SNFAs 的分级结构。特别是引入的静电纺纳米纤维形成了类似于细胞外基质的仿生纳米纤维纹理,为细胞迁移和组织再生提供了有利条件。此外,SNFAs 的杨氏模量可以在 7kPa 到 88kPa 之间自由调节。合理设计的 3D 架构使 SNFAs 能够完美模拟细胞外基质的纤维结构,并能调节其机械性能以与骨组织完美匹配。最后,含纤维的 SNFAs 明显促进了细胞的黏附、增殖和分化,加速了骨修复过程。在 12 周时,缺损区域的骨密度达到 0.53g/cm,骨体积/总体积(BV/TV)比达到 57%。可以预期,这种具有高度模拟细胞外基质微环境和可调节机械性能的组织工程支架在骨修复领域具有广阔的前景。