Suppr超能文献

平衡图表审查工作与 PRS 预测准确性的提高:一项实证研究。

Balancing the efforts of chart review and gains in PRS prediction accuracy: An empirical study.

机构信息

Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA.

Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA; Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA.

出版信息

J Biomed Inform. 2024 Sep;157:104705. doi: 10.1016/j.jbi.2024.104705. Epub 2024 Aug 10.

Abstract

OBJECTIVE

Phenotypic misclassification in genetic association analyses can impact the accuracy of PRS-based prediction models. The bias reduction method proposed by Tong et al. (2019) has demonstrated its efficacy in reducing the effects of bias on the estimation of association parameters between genotype and phenotype while minimizing variance by employing chart reviews on a subset of the data for validating phenotypes, however its improvement of subsequent PRS prediction accuracy remains unclear. Our study aims to fill this gap by assessing the performance of simulated PRS models and estimating the optimal number of chart reviews needed for validation.

METHODS

To comprehensively assess the efficacy of the bias reduction method proposed by Tong et al. in enhancing the accuracy of PRS-based prediction models, we simulated each phenotype under different correlation structures (an independent model, a weakly correlated model, a strongly correlated model) and introduced error-prone phenotypes using two distinct error mechanisms (differential and non-differential phenotyping errors). To facilitate this, we used genotype and phenotype data from 12 case-control datasets in the Alzheimer's Disease Genetics Consortium (ADGC) to produce simulated phenotypes. The evaluation included analyses across various misclassification rates of original phenotypes as well as quantities of validation set. Additionally, we determined the median threshold, identifying the minimal validation size required for a meaningful improvement in the accuracy of PRS-based predictions across a broad spectrum.

RESULTS

This simulation study demonstrated that incorporating chart review does not universally guarantee enhanced performance of PRS-based prediction models. Specifically, in scenarios with minimal misclassification rates and limited validation sizes, PRS models utilizing debiased regression coefficients demonstrated inferior predictive capabilities compared to models using error-prone phenotypes. Put differently, the effectiveness of the bias reduction method is contingent upon the misclassification rates of phenotypes and the size of the validation set employed during chart reviews. Notably, when dealing with datasets featuring higher misclassification rates, the advantages of utilizing this bias reduction method become more evident, requiring a smaller validation set to achieve better performance.

CONCLUSION

This study highlights the importance of choosing an appropriate validation set size to balance between the efforts of chart review and the gain in PRS prediction accuracy. Consequently, our study establishes a valuable guidance for validation planning, across a diverse array of sensitivity and specificity combinations.

摘要

目的

遗传关联分析中的表型误分类会影响基于 PRS 的预测模型的准确性。Tong 等人提出的偏倚减少方法通过在数据的子集上进行图表审查来验证表型,从而证明了其在减少偏倚对基因型与表型之间关联参数估计的影响并最小化方差方面的有效性,然而,其对随后的 PRS 预测准确性的改善仍然不清楚。我们的研究旨在通过评估模拟 PRS 模型的性能并估计验证所需的最佳图表审查次数来填补这一空白。

方法

为了全面评估 Tong 等人提出的偏倚减少方法在提高基于 PRS 的预测模型准确性方面的效果,我们在不同的相关结构下模拟了每个表型(独立模型、弱相关模型、强相关模型),并使用两种不同的误差机制(差异和非差异表型误差)引入了易出错的表型。为了方便这一点,我们使用来自阿尔茨海默病遗传学联合会 (ADGC) 的 12 个病例对照数据集的基因型和表型数据来生成模拟表型。评估包括在原始表型的各种错误分类率和验证集的数量下进行分析。此外,我们确定了中位数阈值,确定了在广泛范围内提高基于 PRS 的预测准确性所需的最小验证大小。

结果

这项模拟研究表明,纳入图表审查并不总是保证基于 PRS 的预测模型的性能得到增强。具体来说,在错误分类率较低且验证集较小的情况下,使用去偏回归系数的 PRS 模型表现出比使用易出错表型的模型更差的预测能力。换句话说,偏倚减少方法的有效性取决于表型的错误分类率和图表审查中使用的验证集的大小。值得注意的是,当处理具有更高错误分类率的数据集时,使用这种偏倚减少方法的优势变得更加明显,需要较小的验证集即可获得更好的性能。

结论

这项研究强调了选择适当的验证集大小以在图表审查的努力和 PRS 预测准确性的提高之间取得平衡的重要性。因此,我们的研究为各种灵敏度和特异性组合的验证计划提供了有价值的指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验