Suppr超能文献

基因panel 预测 HER2 阴性乳腺癌新辅助化疗免疫治疗的反应和获益。

Gene panel predicts neoadjuvant chemoimmunotherapy response and benefit from immunotherapy in HER2-negative breast cancer.

机构信息

Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

出版信息

J Immunother Cancer. 2024 Aug 12;12(8):e009587. doi: 10.1136/jitc-2024-009587.

Abstract

BACKGROUND

It is encountering the dilemma of lacking precise biomarkers to predict the response to neoadjuvant chemoimmunotherapy (NACI) and determine whether patients should use immune checkpoint inhibitors (ICIs) in early breast cancer (BC). We aimed to develop a gene signature to predict NACI response for BC patients and identify individuals suitable for adding ICIs.

PATIENTS AND METHODS

Two I-SPY2 cohorts and one West China Hospital cohort of patients treated with NACI were included. Machine learning algorithms were used to identify key genes. Principal component analysis was used to calculate the ImPredict (IP) score. The interaction effects between biomarkers and treatment regimens were examined based on the logistic regression analysis. The relationship between the IP score and immune microenvironment was investigated through immunohistochemistry (IHC) and multiplex IHC.

RESULTS

The area under the curves of the IP score were 0.935, 0.865, and 0.841 in the discovery cohort, validation cohort 1, and in-house cohort. Marker-treatment interaction tests indicated that the benefits from immunotherapy significantly varied between patients with high and low IP scores (p for interaction <0.001), and patients with high IP scores were more suitable for immunotherapy addition.

CONCLUSIONS

Our IP model shows favorable performance in predicting NACI response and is an effective tool for identifying BC patients who will benefit from ICIs. It may help clinicians optimize treatment strategies and guide clinical decision-making.

摘要

背景

在早期乳腺癌中,缺乏精确的生物标志物来预测新辅助化疗免疫治疗(NACI)的反应,以及确定患者是否应使用免疫检查点抑制剂(ICIs),这使其陷入困境。我们旨在开发一种基因特征来预测 BC 患者对 NACI 的反应,并确定适合添加 ICI 的个体。

患者和方法

纳入了接受 NACI 治疗的 I-SPY2 两个队列和华西医院队列的患者。使用机器学习算法来识别关键基因。主成分分析用于计算 ImPredict(IP)评分。基于逻辑回归分析,检查了生物标志物与治疗方案之间的相互作用。通过免疫组织化学(IHC)和多重免疫组化来研究 IP 评分与免疫微环境之间的关系。

结果

在发现队列、验证队列 1 和内部队列中,IP 评分的曲线下面积分别为 0.935、0.865 和 0.841。标志物-治疗相互作用测试表明,免疫疗法在高 IP 评分和低 IP 评分患者之间的获益显著不同(p <0.001),高 IP 评分的患者更适合免疫治疗联合治疗。

结论

我们的 IP 模型在预测 NACI 反应方面表现出良好的性能,是识别可能从 ICI 中受益的 BC 患者的有效工具。它可能有助于临床医生优化治疗策略并指导临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/419a/11337705/756d8faf824a/jitc-12-8-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验