Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA.
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Eur Urol. 2024 Mar;85(3):242-253. doi: 10.1016/j.eururo.2023.11.008. Epub 2023 Dec 12.
Platinum-based neoadjuvant chemotherapy (NAC) is standard for patients with muscle-invasive bladder cancer (MIBC). Pathologic response (complete: ypT0N0 and partial: <ypT2N0) to NAC is associated with improved survival with ypT0N0 achieved in 30-40% of cases. Strategies to increase response to NAC are needed. Incorporation of immune checkpoint inhibitors (ICIs) has demonstrated promise, and better spatial understanding of the tumor microenvironment may help predict NAC/ICI response.
Using the NanoString GeoMx platform, we performed proteomic digital spatial profiling (DSP) on transurethral resections of bladder tumors from 18 responders (<ypT2) and 18 nonresponders (≥ypT2) from two studies of NAC (gemcitabine and cisplatin) plus ICI (LCCC1520 [pembrolizumab] and BLASST-1 [nivolumab]).
DESIGN, SETTING, AND PARTICIPANTS: Pretreatment tumor samples were stained by hematoxylin and eosin and immunofluorescence (panCK and CD45) to select four regions of interest (ROIs): tumor enriched (TE), immune enriched (IE), tumor/immune interface (tumor interface = TX and immune interface = IX).
DSP was performed with 52 protein markers from immune cell profiling, immunotherapy drug target, immune activation status, immune cell typing, and pan-tumor panels.
Protein marker expression patterns were analyzed to determine their association with pathologic response, incorporating or agnostic of their ROI designation (TE/IE/TX/IX). Overall, DSP-based marker expression showed high intratumoral heterogeneity; however, response was associated with markers including PD-L1 (ROI agnostic), Ki-67 (ROI agnostic, TE, IE, and TX), HLA-DR (TX), and HER2 (TE). An elastic net model of response with ROI-inclusive markers demonstrated better validation set performance (area under the curve [AUC] = 0.827) than an ROI-agnostic model (AUC = 0.432). A model including DSP, tumor mutational burden, and clinical data performed no better (AUC = 0.821) than the DSP-only model.
Despite high intratumoral heterogeneity of DSP-based marker expression, we observed associations between pathologic response and specific DSP-based markers in a spatially dependent context. Further exploration of tumor region-specific biomarkers may help predict response to neoadjuvant chemoimmunotherapy in MIBC.
In this study, we used the GeoMx platform to perform proteomic digital spatial profiling on transurethral resections of bladder tumors from 18 responders and 18 nonresponders from two studies of neoadjuvant chemotherapy (gemcitabine and cisplatin) plus immune checkpoint inhibitor therapy (LCCC1520 [pembrolizumab] and BLASST-1 [nivolumab]). We found that assessing protein marker expression in the context of tumor architecture improved response prediction.
铂类新辅助化疗(NAC)是肌层浸润性膀胱癌(MIBC)患者的标准治疗方法。NAC 治疗后的病理反应(完全:ypT0N0 和部分:<ypT2N0)与生存率提高相关,在 30-40%的病例中达到 ypT0N0。需要采用增加 NAC 反应的策略。免疫检查点抑制剂(ICI)的应用显示出了希望,更好地理解肿瘤微环境的空间分布情况可能有助于预测 NAC/ICI 反应。
我们使用 NanoString GeoMx 平台,对来自两项 NAC(吉西他滨和顺铂)加 ICI(LCCC1520 [pembrolizumab]和 BLASST-1 [nivolumab])研究中 18 例(<ypT2)和 18 例(≥ypT2)病理反应者(<ypT2)的经尿道膀胱肿瘤切除术进行了基于蛋白质组学的数字空间分析(DSP)。
设计、地点和参与者:对预处理肿瘤样本进行苏木精和伊红染色以及免疫荧光染色(panCK 和 CD45),以选择四个感兴趣区域(ROI):肿瘤富集区(TE)、免疫富集区(IE)、肿瘤/免疫界面区(肿瘤界面=TX 和免疫界面=IX)。
用 52 种免疫细胞特征、免疫治疗药物靶点、免疫激活状态、免疫细胞分型和全肿瘤面板的蛋白质标志物进行 DSP。
分析蛋白质标志物的表达模式以确定其与病理反应的相关性,同时考虑或不考虑其 ROI 命名(TE/IE/TX/IX)。总体而言,基于 DSP 的标志物表达显示出高度的肿瘤内异质性;然而,反应与包括 PD-L1(ROI 不明确)、Ki-67(ROI 不明确、TE、IE 和 TX)、HLA-DR(TX)和 HER2(TE)在内的标志物有关。包含 ROI 的响应弹性网络模型显示出比 ROI 不明确模型更好的验证集性能(曲线下面积 [AUC] = 0.827)。包含 DSP、肿瘤突变负担和临床数据的模型的性能并不优于仅包含 DSP 的模型(AUC = 0.821)。
尽管基于 DSP 的标志物表达存在高度的肿瘤内异质性,但我们在空间相关背景下观察到了特定的基于 DSP 的标志物与病理反应之间的相关性。进一步探索肿瘤区域特异性生物标志物可能有助于预测 MIBC 新辅助化疗免疫治疗的反应。
在这项研究中,我们使用 GeoMx 平台对来自两项新辅助化疗(吉西他滨和顺铂)加免疫检查点抑制剂治疗(LCCC1520 [pembrolizumab]和 BLASST-1 [nivolumab])研究中 18 例病理反应者和 18 例非病理反应者的经尿道膀胱肿瘤切除术进行了基于蛋白质组学的数字空间分析。我们发现,在肿瘤结构的背景下评估蛋白质标志物的表达可以提高反应预测能力。