Suppr超能文献

基于卷积神经网络和电气参数的抽油机示功图生成

Dynamometer card generation for pumping units based on CNN and electrical parameters.

作者信息

Yuan Chunhua, Wu Wendong, Li Xiangyu

机构信息

School of Automation and Electrical Engineering, Shenyang Ligong University, Shengyang, 110159, Liaoning, China.

出版信息

Sci Rep. 2024 Aug 12;14(1):18657. doi: 10.1038/s41598-024-69516-y.

Abstract

In the actual production process of oil fields, the real-time and accurate acquisition of dynamic recorder data from the pumping unit is of great significance for the diagnosis of well failures. The traditional method of obtaining the card of the dynamometer usually includes installing a load sensor on the auxiliary head of the pumping unit. However, due to the harsh environment of the oil field production site, these load sensors often suffer from damage, distortion, and aging, resulting in large measurement errors and low reliability. This paper proposes a mixed model of pumping based on motor electrical parameter data and CNN convolutional neural network, which has good consistency with actual data in terms of predictive performance. Thus, the highlights of this paper can be summed up in two points: (1) Based on the mathematical model of the AC motor, the speed of the motor and the torque output of the motor are accurately estimated. (2) The convolutional neural network is introduced to compensate for the errors caused by the defects of the pumping unit mechanism model.

摘要

在油田实际生产过程中,实时、准确地获取抽油机动态记录仪数据对于油井故障诊断具有重要意义。传统的获取示功图的方法通常包括在抽油机的驴头上安装载荷传感器。然而,由于油田生产现场环境恶劣,这些载荷传感器经常出现损坏、变形和老化等问题,导致测量误差大、可靠性低。本文提出了一种基于电机电参数数据和卷积神经网络的抽油混合模型,该模型在预测性能方面与实际数据具有良好的一致性。因此,本文的亮点可以总结为两点:(1)基于交流电机的数学模型,准确估计电机的转速和电机的转矩输出。(2)引入卷积神经网络来补偿抽油机机构模型缺陷所引起的误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18d2/11319673/8883a5c69bd4/41598_2024_69516_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验