Suppr超能文献

数字医疗创新改善医疗服务:圣路易斯华盛顿大学医学院/巴恩斯-犹太医院医疗创新实验室。

INNOVATIONS IN DIGITAL HEALTH TO IMPROVE CARE DELIVERY: THE BJC HEALTHCARE/WASHINGTON UNIVERSITY SCHOOL OF MEDICINE HEALTHCARE INNOVATION LAB.

机构信息

St. Louis, Missouri.

出版信息

Trans Am Clin Climatol Assoc. 2024;134:239-251.

Abstract

The Healthcare Innovation Lab, established by BJC HealthCare and Washington University School of Medicine, has catalyzed care delivery innovations since 2017. Focusing on digital health to enhance care delivery and patient outcomes, the Lab emphasizes predictive analytics, digital point-of-care tools, and remote patient monitoring. The Lab identifies innovative ideas that align with the health system mission and deliver empiric value to its patients and care teams. Since its inception, the Lab has vetted 507 ideas, piloting 98, with a success rate of 40%. Examples include a predictive model to improve palliative care referrals and goal-of-care discussions, a digital approach to non-emergent medical transportation that enhances access and equity, and a COVID-19 home monitoring program that proved essential during the pandemic. These initiatives underscore the importance of integrating digital technology with health care, balancing innovation with practical application, and using a data-informed approach to innovation selection and assessment.

摘要

BJC 医疗保健公司和华盛顿大学医学院成立的医疗保健创新实验室自 2017 年以来推动了医疗保健创新。该实验室专注于数字医疗,以提高医疗服务和患者的治疗效果,重点关注预测分析、数字即时工具和远程患者监测。该实验室确定了与医疗系统使命一致的创新理念,并为患者和护理团队提供经验价值。自成立以来,该实验室已经审查了 507 个创意,并进行了 98 个试点,成功率为 40%。其中的一些例子包括一个预测模型,用于改善姑息治疗转介和治疗目标讨论;一种用于非紧急医疗运输的数字方法,提高了可及性和公平性;以及一个 COVID-19 家庭监测计划,在大流行期间非常重要。这些举措强调了将数字技术与医疗保健相结合的重要性,平衡创新与实际应用,以及使用数据驱动的方法进行创新选择和评估。

相似文献

4
How Penn Medicine Is Advancing Care Delivery to Meet More Patients' Needs.
Front Health Serv Manage. 2022 Apr 1;38(3):4-9. doi: 10.1097/HAP.0000000000000135.
6
Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective.
Prog Retin Eye Res. 2021 May;82:100900. doi: 10.1016/j.preteyeres.2020.100900. Epub 2020 Sep 6.
7
Digital Technology Application for Improved Responses to Health Care Challenges: Lessons Learned From COVID-19.
Can J Cardiol. 2022 Feb;38(2):279-291. doi: 10.1016/j.cjca.2021.11.014. Epub 2021 Dec 1.
9
Strengthening primary health care in Europe with digital solutions.
Aten Primaria. 2024 Oct;56(10):102904. doi: 10.1016/j.aprim.2024.102904. Epub 2024 Apr 30.

本文引用的文献

1
Cardiovascular diseases prediction by machine learning incorporation with deep learning.
Front Med (Lausanne). 2023 Apr 17;10:1150933. doi: 10.3389/fmed.2023.1150933. eCollection 2023.
3
Effect of interventions for non-emergent medical transportation: a systematic review and meta-analysis.
BMC Public Health. 2022 Apr 21;22(1):799. doi: 10.1186/s12889-022-13149-1.
4
The Current State and Validity of Digital Assessment Tools for Psychiatry: Systematic Review.
JMIR Ment Health. 2022 Mar 30;9(3):e32824. doi: 10.2196/32824.
5
Association of Race and Neighborhood Disadvantage with Patient Engagement in a Home-Based COVID-19 Remote Monitoring Program.
J Gen Intern Med. 2022 Mar;37(4):838-846. doi: 10.1007/s11606-021-07207-4. Epub 2022 Jan 6.
6
Implementation of a non-emergent medical transportation programme at an integrated health system.
BMJ Health Care Inform. 2021 Sep;28(1). doi: 10.1136/bmjhci-2021-100417.
7
Factors influencing the effectiveness of remote patient monitoring interventions: a realist review.
BMJ Open. 2021 Aug 25;11(8):e051844. doi: 10.1136/bmjopen-2021-051844.
9
Predictive analytics in health care: how can we know it works?
J Am Med Inform Assoc. 2019 Dec 1;26(12):1651-1654. doi: 10.1093/jamia/ocz130.
10
Knowledge of Palliative Care Among American Adults: 2018 Health Information National Trends Survey.
J Pain Symptom Manage. 2019 Jul;58(1):39-47.e3. doi: 10.1016/j.jpainsymman.2019.03.014. Epub 2019 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验