Suppr超能文献

针对时间依赖性结局的治疗轨迹的历史受限边际结构模型和潜在类别增长分析。

History-restricted marginal structural model and latent class growth analysis of treatment trajectories for a time-dependent outcome.

作者信息

Diop Awa, Sirois Caroline, Guertin Jason R, Schnitzer Mireille E, Brophy James M, Blais Claudia, Talbot Denis

机构信息

Département de médecine sociale et préventive, Université Laval, Centre de recherche du CHU de Québec - Université Laval, Axe santé des populations et pratiques optimales en santé, Québec, QC, Canada.

Faculté de pharmacie, Université Laval, Centre de recherche du CHU de Québec - Université Laval, Axe santé des populations et pratiques optimales en santé, Québec, QC, Canada.

出版信息

Int J Biostat. 2024 Aug 12;20(2):467-490. doi: 10.1515/ijb-2023-0116. eCollection 2024 Nov 1.

Abstract

In previous work, we introduced a framework that combines latent class growth analysis (LCGA) with marginal structural models (LCGA-MSM). LCGA-MSM first summarizes the numerous time-varying treatment patterns into a few trajectory groups and then allows for a population-level causal interpretation of the group differences. However, the LCGA-MSM framework is not suitable when the outcome is time-dependent. In this study, we propose combining a nonparametric history-restricted marginal structural model (HRMSM) with LCGA. HRMSMs can be seen as an application of standard MSMs on multiple time intervals. To the best of our knowledge, we also present the first application of HRMSMs with a time-to-event outcome. It was previously noted that HRMSMs could pose interpretation problems in survival analysis when either targeting a hazard ratio or a survival curve. We propose a causal parameter that bypasses these interpretation challenges. We consider three different estimators of the parameters: inverse probability of treatment weighting (IPTW), g-computation, and a pooled longitudinal targeted maximum likelihood estimator (pooled LTMLE). We conduct simulation studies to measure the performance of the proposed LCGA-HRMSM. For all scenarios, we obtain unbiased estimates when using either g-computation or pooled LTMLE. IPTW produced estimates with slightly larger bias in some scenarios. Overall, all approaches have good coverage of the 95 % confidence interval. We applied our approach to a population of older Quebecers composed of 57,211 statin initiators and found that a greater adherence to statins was associated with a lower combined risk of cardiovascular disease or all-cause mortality.

摘要

在之前的工作中,我们引入了一个将潜在类别增长分析(LCGA)与边际结构模型(LCGA-MSM)相结合的框架。LCGA-MSM首先将众多随时间变化的治疗模式归纳为几个轨迹组,然后对组间差异进行群体水平的因果解释。然而,当结果是时间依赖性的时候,LCGA-MSM框架并不适用。在本研究中,我们提出将非参数历史受限边际结构模型(HRMSM)与LCGA相结合。HRMSM可以看作是标准边际结构模型在多个时间间隔上的应用。据我们所知,我们还首次将HRMSM应用于生存结局。之前有人指出,在生存分析中,当以风险比或生存曲线为目标时,HRMSM可能会带来解释问题。我们提出了一个绕过这些解释挑战的因果参数。我们考虑了三种不同的参数估计方法:治疗权重的逆概率(IPTW)、g计算法和合并纵向靶向最大似然估计器(合并LTMLE)。我们进行了模拟研究以衡量所提出的LCGA-HRMSM的性能。对于所有情景,当使用g计算法或合并LTMLE时,我们获得了无偏估计。在某些情景中,IPTW产生的估计偏差略大。总体而言,所有方法对95%置信区间都有良好的覆盖。我们将我们的方法应用于由57211名开始使用他汀类药物的魁北克老年人组成的人群,发现更高的他汀类药物依从性与更低的心血管疾病或全因死亡率的综合风险相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3eef/11661564/c4dd124ffd28/j_ijb-2023-0116_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验