Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.
Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, Massachusetts.
Biometrics. 2021 Jun;77(2):740-753. doi: 10.1111/biom.13321. Epub 2020 Jul 6.
The g-formula can be used to estimate the survival curve under a sustained treatment strategy. Two available estimators of the g-formula are noniterative conditional expectation and iterative conditional expectation. We propose a version of the iterative conditional expectation estimator and describe its procedures for deterministic and random treatment strategies. Also, because little is known about the comparative performance of noniterative and iterative conditional expectation estimators, we explore their relative efficiency via simulation studies. Our simulations show that, in the absence of model misspecification and unmeasured confounding, our proposed iterative conditional expectation estimator and the noniterative conditional expectation estimator are similarly efficient, and that both are at least as efficient as the classical iterative conditional expectation estimator. We describe an application of both noniterative and iterative conditional expectation to answer "when to start" treatment questions using data from the HIV-CAUSAL Collaboration.
g 公式可用于估计持续治疗策略下的生存曲线。g 公式有两种可用的估计方法,即非迭代条件期望和迭代条件期望。我们提出了一种迭代条件期望估计量的版本,并描述了其在确定性和随机治疗策略下的程序。此外,由于对非迭代和迭代条件期望估计量的比较性能知之甚少,我们通过模拟研究探讨了它们的相对效率。我们的模拟表明,在不存在模型误设和未测量混杂的情况下,我们提出的迭代条件期望估计量和非迭代条件期望估计量具有相似的效率,并且两者的效率至少与经典迭代条件期望估计量一样高。我们描述了使用 HIV-CAUSAL 合作组织的数据应用非迭代和迭代条件期望来回答“何时开始”治疗问题的应用。