Suppr超能文献

单细胞迁移的动态模式分析。

Profiling Dynamic Patterns of Single-Cell Motility.

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21212, USA.

Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21212, USA.

出版信息

Adv Sci (Weinh). 2024 Oct;11(38):e2400918. doi: 10.1002/advs.202400918. Epub 2024 Aug 13.

Abstract

Cell motility plays an essential role in many biological processes as cells move and interact within their local microenvironments. Current methods for quantifying cell motility typically involve tracking individual cells over time, but the results are often presented as averaged values across cell populations. While informative, these ensemble approaches have limitations in assessing cellular heterogeneity and identifying generalizable patterns of single-cell behaviors, at baseline and in response to perturbations. In this study, CaMI is introduced, a computational framework designed to leverage the single-cell nature of motility data. CaMI identifies and classifies distinct spatio-temporal behaviors of individual cells, enabling robust classification of single-cell motility patterns in a large dataset (n = 74 253 cells). This framework allows quantification of spatial and temporal heterogeneities, determination of single-cell motility behaviors across various biological conditions and provides a visualization scheme for direct interpretation of dynamic cell behaviors. Importantly, CaMI reveals insights that conventional cell motility analyses may overlook, showcasing its utility in uncovering robust biological insights. Together, a multivariate framework is presented to classify emergent patterns of single-cell motility, emphasizing the critical role of cellular heterogeneity in shaping cell behaviors across populations.

摘要

细胞迁移在许多生物过程中起着至关重要的作用,因为细胞在其局部微环境中移动和相互作用。目前用于量化细胞迁移的方法通常涉及随时间跟踪单个细胞,但结果通常以细胞群体的平均值呈现。虽然这些整体方法提供了有价值的信息,但在评估细胞异质性和识别单细胞行为的可推广模式方面存在局限性,无论是在基线水平还是在受到干扰时。在这项研究中,引入了 CaMI,这是一种计算框架,旨在利用迁移数据的单细胞性质。CaMI 识别和分类单个细胞的不同时空行为,能够在大型数据集(n = 74253 个细胞)中对单细胞迁移模式进行稳健分类。该框架允许量化空间和时间异质性,确定各种生物条件下的单细胞迁移行为,并提供用于直接解释动态细胞行为的可视化方案。重要的是,CaMI 揭示了传统细胞迁移分析可能忽略的见解,展示了其在揭示稳健的生物学见解方面的实用性。总之,提出了一个多变量框架来对单细胞迁移的新兴模式进行分类,强调了细胞异质性在塑造群体中细胞行为方面的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d44f/11481225/96ff8d55645b/ADVS-11-2400918-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验