Chen Shenghua, Zheng Xiaobo, Zhu Peng, Li Yapeng, Zhuang Zechao, Wu Hangjuan, Zhu Jiexin, Xiao Chunhui, Chen Mingzhao, Wang Pingshan, Wang Dingsheng, He Ya-Ling
School of Chemistry, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.
Angew Chem Int Ed Engl. 2024 Dec 9;63(50):e202411591. doi: 10.1002/anie.202411591. Epub 2024 Oct 28.
Deeply electrolytic reduction of carbon dioxide (CO) to high-value ethylene (CH) is very attractive. However, the sluggish kinetics of C-C coupling seriously results in the low selectivity of CO electroreduction to CH. Herein, we report a copper-based polyhedron (Cu2) that features uniformly distributed and atomically precise bi-Cu units, which can stabilize *OCCO dipole to facilitate the C-C coupling for high selective CH production. The CH faradaic efficiency (FE) reaches 51 % with a current density of 469.4 mA cm, much superior to the Cu single site catalyst (Cu SAC) (0 %). Moreover, the Cu2 catalyst has a higher turnover frequency (TOF, ~520 h) compared to Cu nanoparticles (9.42 h) and Cu SAC (~0.87 h). In situ characterizations and theoretical calculations revealed that the unique Cu2 structural configuration could optimize the dipole moments and stabilize the *OCCO adsorbate to promote the generation of CH.
将二氧化碳(CO₂)深度电解还原为高价值的乙烯(C₂H₄)极具吸引力。然而,C-C偶联反应动力学缓慢严重导致了CO₂电还原为C₂H₄的选择性较低。在此,我们报道了一种基于铜的多面体(Cu₂),其具有均匀分布且原子精确的双铜单元,能够稳定OCCO偶极子以促进C-C偶联反应,从而实现高选择性的C₂H₄生成。在电流密度为469.4 mA cm⁻²时,C₂H₄的法拉第效率(FE)达到51%,远优于铜单原子催化剂(Cu SAC)(0%)。此外,与铜纳米颗粒(9.42 h⁻¹)和Cu SAC(0.87 h⁻¹)相比,Cu₂催化剂具有更高的周转频率(TOF,520 h⁻¹)。原位表征和理论计算表明,独特的Cu₂结构构型可以优化偶极矩并稳定OCCO吸附质,从而促进C₂H₄的生成。