Yin Zhouyang, Yu Jiaqi, Xie Zhenhua, Yu Shen-Wei, Zhang Liyue, Akauola Tangi, Chen Jingguang G, Huang Wenyu, Qi Long, Zhang Sen
Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.
Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.
J Am Chem Soc. 2022 Nov 16;144(45):20931-20938. doi: 10.1021/jacs.2c09773. Epub 2022 Nov 3.
A hybrid catalyst with integrated single-atom Ni and nanoscale Cu catalytic components is reported to enhance the C-C coupling and ethylene (CH) production efficiency in the electrocatalytic CO reduction reaction (eCORR). The single-atom Ni anchored on high-surface-area ordered mesoporous carbon enables high-rate and selective conversion of CO to CO in a wide potential range, which complements the subsequent CO enrichment on Cu nanowires (NWs) for the C-C coupling to CH. In situ surface-enhanced infrared absorption spectroscopy (SEIRAS) confirms the substantially improved CO enrichment on Cu, once the incorporation of single-atom Ni occurs. Also, in situ X-ray absorption near-edge structure (XANES) demonstrates the structural stability of the hybrid catalyst during eCORR. By modulating hybrid compositions, the optimized catalyst shows 66% Faradaic efficiency (FE) in an alkaline flow cell with over 100 mA·cm at -0.5 V versus reversible hydrogen electrode, leading to a five-order enhancement in CH selectivity compared with single-component Cu NWs.
据报道,一种具有集成单原子镍和纳米级铜催化组分的混合催化剂可提高电催化CO还原反应(eCORR)中的C-C偶联和乙烯(CH)生成效率。锚定在高比表面积有序介孔碳上的单原子镍能够在很宽的电位范围内将CO高速率、选择性地转化为CO,这补充了随后在铜纳米线(NWs)上进行C-C偶联生成CH的CO富集过程。原位表面增强红外吸收光谱(SEIRAS)证实,一旦掺入单原子镍,铜上的CO富集就会显著改善。此外,原位X射线吸收近边结构(XANES)表明混合催化剂在eCORR过程中的结构稳定性。通过调节混合成分,优化后的催化剂在碱性流动池中相对于可逆氢电极在-0.5 V时显示出66%的法拉第效率(FE),电流密度超过100 mA·cm,与单组分铜纳米线相比,CH选择性提高了五个数量级。