CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina.
Cell Mol Life Sci. 2024 Aug 13;81(1):348. doi: 10.1007/s00018-024-05355-4.
The biological clock in eukaryotes controls daily rhythms in physiology and behavior. It displays a complex organization that involves the molecular transcriptional clock and the redox oscillator which may coordinately work to control cellular rhythms. The redox oscillator has emerged very early in evolution in adaptation to the environmental changes in O levels and has been shown to regulate daily rhythms in glycerolipid (GL) metabolism in different eukaryotic cells. GLs are key components of lipid droplets (LDs), intracellular storage organelles, present in all living organisms, and essential for energy and lipid homeostasis regulation and survival; however, the cell bioenergetics status is not constant across time and depends on energy demands. Thus, the formation and degradation of LDs may reflect a time-dependent process following energy requirements. This work investigated the presence of metabolic rhythms in LD content along evolution by studying prokaryotic and eukaryotic cells and organisms. We found sustained temporal oscillations in LD content in Pseudomonas aeruginosa bacteria and Caenorhabditis elegans synchronized by temperature cycles, in serum-shock synchronized human embryonic kidney cells (HEK 293 cells) and brain tumor cells (T98G and GL26) after a dexamethasone pulse. Moreover, in synchronized T98G cells, LD oscillations were altered by glycogen synthase kinase-3 (GSK-3) inhibition that affects the cytosolic activity of the metabolic oscillator or by knocking down LIPIN-1, a key GL synthesizing enzyme. Overall, our findings reveal the existence of metabolic oscillations in terms of LD content highly conserved across evolutionary scales notwithstanding variations in complexity, regulation, and cell organization.
真核生物中的生物钟控制着生理和行为的日常节律。它显示出一种复杂的组织,涉及分子转录钟和氧化还原振荡器,它们可能协同工作以控制细胞节律。氧化还原振荡器在进化过程中很早就出现了,以适应 O 水平的环境变化,并已被证明调节不同真核细胞中甘油脂质 (GL) 代谢的日常节律。GL 是脂质滴 (LD) 的关键组成部分,LD 是一种存在于所有生物体中的细胞内储存细胞器,对于能量和脂质稳态调节和生存至关重要;然而,细胞生物能状态不是一成不变的,取决于能量需求。因此,LD 的形成和降解可能反映了一个随时间变化的过程,以满足能量需求。这项工作通过研究原核和真核细胞和生物,研究了 LD 含量在进化过程中的代谢节律的存在。我们发现,铜绿假单胞菌和秀丽隐杆线虫中的 LD 含量在温度循环同步时会持续出现时间波动,在血清休克同步的人胚肾细胞 (HEK 293 细胞) 和脑肿瘤细胞 (T98G 和 GL26) 中,在皮质酮脉冲后也会出现时间波动。此外,在同步的 T98G 细胞中,LD 波动会被糖原合酶激酶-3 (GSK-3) 抑制改变,GSK-3 抑制会影响代谢振荡器的细胞质活性,或者通过敲低脂质合成酶的关键酶 LIPIN-1 来改变。总的来说,我们的发现揭示了代谢波动的存在,具体表现为 LD 含量在不同的进化尺度上高度保守,尽管存在复杂性、调节和细胞组织的变化。