Suppr超能文献

肺动脉高压的筛查策略

Screening strategies for pulmonary arterial hypertension.

作者信息

Kiely David G, Lawrie Allan, Humbert Marc

机构信息

Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, S10 2JF, UK.

Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, S10 2RX, UK.

出版信息

Eur Heart J Suppl. 2019 Dec;21(Suppl K):K9-K20. doi: 10.1093/eurheartj/suz204. Epub 2019 Dec 17.

Abstract

Pulmonary arterial hypertension (PAH) is rare and, if untreated, has a median survival of 2-3 years. Pulmonary arterial hypertension may be idiopathic (IPAH) but is frequently associated with other conditions. Despite increased awareness, therapeutic advances, and improved outcomes, the time from symptom onset to diagnosis remains unchanged. The commonest symptoms of PAH (breathlessness and fatigue) are non-specific and clinical signs are usually subtle, frequently preventing early diagnosis where therapies may be more effective. The failure to improve the time to diagnosis largely reflects an inability to identify patients at increased risk of PAH using current approaches. To date, strategies to improve the time to diagnosis have focused on screening patients with a high prevalence [systemic sclerosis (10%), patients with portal hypertension assessed for liver transplantation (2-6%), carriers of mutations of the gene encoding bone morphogenetic protein receptor type II, and first-degree relatives of patients with heritable PAH]. In systemic sclerosis, screening algorithms have demonstrated that patients can be identified earlier, however, current approaches are resource intensive. Until, recently, it has not been considered possible to screen populations for rare conditions such as IPAH (prevalence 5-15/million/year). However, there is interest in the use of artificial intelligence approaches in medicine and the application of diagnostic algorithms to large healthcare data sets, to identify patients at risk of rare conditions. In this article, we review current approaches and challenges in screening for PAH and explore novel population-based approaches to improve detection.

摘要

肺动脉高压(PAH)较为罕见,若不治疗,中位生存期为2至3年。肺动脉高压可能是特发性的(IPAH),但常与其他病症相关。尽管人们的认识有所提高、治疗取得进展且预后有所改善,但从症状出现到诊断的时间仍未改变。PAH最常见的症状(呼吸急促和疲劳)不具有特异性,临床体征通常不明显,这常常妨碍在治疗可能更有效的早期阶段进行诊断。诊断时间未能缩短,很大程度上反映出目前的方法无法识别PAH风险增加的患者。迄今为止,缩短诊断时间的策略主要集中在对高患病率人群进行筛查[系统性硬化症患者(10%)、接受肝移植评估的门静脉高压患者(2 - 6%)、编码骨形态发生蛋白受体II型基因的突变携带者以及遗传性PAH患者的一级亲属]。在系统性硬化症中,筛查算法已证明可以更早地识别患者,然而,目前的方法资源消耗大。直到最近,人们还认为对诸如IPAH(患病率为每年5 - 15/百万)这样的罕见病症进行人群筛查是不可能的。然而,人们对人工智能方法在医学中的应用以及将诊断算法应用于大型医疗数据集以识别罕见病症风险患者很感兴趣。在本文中,我们回顾了PAH筛查的当前方法和挑战,并探索基于人群的新方法以改善检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0906/6915059/03c4eeb562a7/suz204f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验