Teasdale Scott B, Ardill-Young Oliver, Morell Rachel, Ward Philip B, Khandaker Golam M, Upthegrove Rachel, Curtis Jackie, Perry Benjamin I
Discipline of Psychiatry and Mental Health, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia.
Mindgardens Neuroscience Network, Randwick, NSW, Australia.
Australas Psychiatry. 2025 Feb;33(1):120-127. doi: 10.1177/10398562241269171. Epub 2024 Aug 13.
To examine the accuracy and likely clinical usefulness of the Psychosis Metabolic Risk Calculator (PsyMetRiC) in predicting up-to six-year risk of incident metabolic syndrome in an Australian sample of young people with first-episode psychosis.
We conducted a retrospective study at a secondary care early psychosis treatment service among people aged 16-35 years, extracting relevant data at the time of antipsychotic commencement and between one-to-six-years later. We assessed algorithm accuracy primarily via discrimination (C-statistic), calibration (calibration plots) and clinical usefulness (decision curve analysis). Model updating and recalibration generated a site-specific (Australian) PsyMetRiC version.
We included 116 people with baseline and follow-up data: 73% male, mean age 20.1 years, mean follow-up 2.6 years, metabolic syndrome prevalence 13%. C-statistics for both partial- (C = 0.71, 95% CI 0.64-0.75) and full-models (C = 0.72, 95% CI 0.65-0.77) were acceptable; however, calibration plots demonstrated consistent under-prediction of risk. Recalibration and updating led to slightly improved C-statistics, greatly improved agreement between observed and predicted risk, and a narrow window of likely clinical usefulness improved significantly.
An updated and recalibrated PsyMetRiC model, PsyMetRiC-Australia, shows promise. Validation in a large sample is required to confirm its accuracy and clinical usefulness for the Australian population.
在澳大利亚首次发作精神病的年轻人群样本中,检验精神病代谢风险计算器(PsyMetRiC)预测未来六年内发生代谢综合征风险的准确性及可能的临床实用性。
我们在一家二级护理早期精神病治疗服务机构对16至35岁的人群进行了一项回顾性研究,在开始使用抗精神病药物时以及一至六年之后提取相关数据。我们主要通过区分度(C统计量)、校准(校准图)和临床实用性(决策曲线分析)来评估算法的准确性。模型更新和重新校准生成了一个特定地点(澳大利亚)的PsyMetRiC版本。
我们纳入了116名有基线和随访数据的患者:男性占73%,平均年龄20.1岁,平均随访2.6年,代谢综合征患病率为13%。部分模型(C = 0.71,95%置信区间0.64 - 0.75)和完整模型(C = 0.72,95%置信区间0.65 - 0.77)的C统计量均可接受;然而,校准图显示风险预测始终偏低。重新校准和更新导致C统计量略有改善,观察到的风险与预测风险之间的一致性大大提高,可能具有临床实用性的狭窄窗口也显著改善。
经过更新和重新校准的PsyMetRiC模型,即澳大利亚版PsyMetRiC,显示出了前景。需要在大样本中进行验证,以确认其对澳大利亚人群的准确性和临床实用性。