Perry Benjamin I, Osimo Emanuele F, Upthegrove Rachel, Mallikarjun Pavan K, Yorke Jessica, Stochl Jan, Perez Jesus, Zammit Stan, Howes Oliver, Jones Peter B, Khandaker Golam M
Department of Psychiatry, University of Cambridge, Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK.
Department of Psychiatry, University of Cambridge, Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK; MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Imperial College, London, UK.
Lancet Psychiatry. 2021 Jul;8(7):589-598. doi: 10.1016/S2215-0366(21)00114-0. Epub 2021 Jun 1.
Young people with psychosis are at high risk of developing cardiometabolic disorders; however, there is no suitable cardiometabolic risk prediction algorithm for this group. We aimed to develop and externally validate a cardiometabolic risk prediction algorithm for young people with psychosis.
We developed the Psychosis Metabolic Risk Calculator (PsyMetRiC) to predict up to 6-year risk of incident metabolic syndrome in young people (aged 16-35 years) with psychosis from commonly recorded information at baseline. We developed two PsyMetRiC versions using the forced entry method: a full model (including age, sex, ethnicity, body-mass index, smoking status, prescription of a metabolically active antipsychotic medication, HDL concentration, and triglyceride concentration) and a partial model excluding biochemical results. PsyMetRiC was developed using data from two UK psychosis early intervention services (Jan 1, 2013, to Nov 4, 2020) and externally validated in another UK early intervention service (Jan 1, 2012, to June 3, 2020). A sensitivity analysis was done in UK birth cohort participants (aged 18 years) who were at risk of developing psychosis. Algorithm performance was assessed primarily via discrimination (C statistic) and calibration (calibration plots). We did a decision curve analysis and produced an online data-visualisation app.
651 patients were included in the development samples, 510 in the validation sample, and 505 in the sensitivity analysis sample. PsyMetRiC performed well at internal (full model: C 0·80, 95% CI 0·74-0·86; partial model: 0·79, 0·73-0·84) and external validation (full model: 0·75, 0·69-0·80; and partial model: 0·74, 0·67-0·79). Calibration of the full model was good, but there was evidence of slight miscalibration of the partial model. At a cutoff score of 0·18, in the full model PsyMetRiC improved net benefit by 7·95% (sensitivity 75%, 95% CI 66-82; specificity 74%, 71-78), equivalent to detecting an additional 47% of metabolic syndrome cases.
We have developed an age-appropriate algorithm to predict the risk of incident metabolic syndrome, a precursor of cardiometabolic morbidity and mortality, in young people with psychosis. PsyMetRiC has the potential to become a valuable resource for early intervention service clinicians and could enable personalised, informed health-care decisions regarding choice of antipsychotic medication and lifestyle interventions.
National Institute for Health Research and Wellcome Trust.
患有精神病的年轻人患心脏代谢疾病的风险很高;然而,对于这一群体,尚无合适的心脏代谢风险预测算法。我们旨在开发并外部验证一种针对患有精神病的年轻人的心脏代谢风险预测算法。
我们开发了精神病代谢风险计算器(PsyMetRiC),以根据基线时通常记录的信息预测患有精神病的年轻人(16 - 35岁)发生代谢综合征的长达6年的风险。我们使用强制进入法开发了两个PsyMetRiC版本:一个完整模型(包括年龄、性别、种族、体重指数、吸烟状况、代谢活性抗精神病药物的处方、高密度脂蛋白浓度和甘油三酯浓度)和一个不包括生化结果的部分模型。PsyMetRiC是使用来自英国两个精神病早期干预服务机构的数据(2013年1月1日至2020年11月4日)开发的,并在另一个英国早期干预服务机构(2012年1月1日至2020年6月3日)进行了外部验证。在有患精神病风险的英国出生队列参与者(18岁)中进行了敏感性分析。算法性能主要通过区分度(C统计量)和校准(校准图)进行评估。我们进行了决策曲线分析并制作了一个在线数据可视化应用程序。
651名患者被纳入开发样本,510名被纳入验证样本,505名被纳入敏感性分析样本。PsyMetRiC在内部(完整模型:C 0·80,95%置信区间0·74 - 0·86;部分模型:0·79,0·73 - 0·84)和外部验证(完整模型:0·75,0·69 - 0·80;部分模型:0·74,0·67 - 0·79)中表现良好。完整模型的校准良好,但有证据表明部分模型存在轻微的校准错误。在截断分数为0·18时,在完整模型中PsyMetRiC将净效益提高了7·95%(敏感性75%,95%置信区间66 - 82;特异性74%,71 - 78),相当于多检测出47%的代谢综合征病例。
我们开发了一种适合年龄的算法来预测患有精神病的年轻人发生代谢综合征的风险,代谢综合征是心脏代谢疾病发病和死亡的先兆。PsyMetRiC有可能成为早期干预服务临床医生的宝贵资源,并能够就抗精神病药物的选择和生活方式干预做出个性化、明智的医疗保健决策。
英国国家卫生研究院和惠康信托基金会。