Perry B I, Upthegrove R, Crawford O, Jang S, Lau E, McGill I, Carver E, Jones P B, Khandaker G M
Department of Psychiatry, University of Cambridge, Cambridge, UK.
Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK.
Acta Psychiatr Scand. 2020 Sep;142(3):215-232. doi: 10.1111/acps.13212. Epub 2020 Jul 29.
Cardiometabolic risk prediction algorithms are common in clinical practice. Young people with psychosis are at high risk for developing cardiometabolic disorders. We aimed to examine whether existing cardiometabolic risk prediction algorithms are suitable for young people with psychosis.
We conducted a systematic review and narrative synthesis of studies reporting the development and validation of cardiometabolic risk prediction algorithms for general or psychiatric populations. Furthermore, we used data from 505 participants with or at risk of psychosis at age 18 years in the ALSPAC birth cohort, to explore the performance of three algorithms (QDiabetes, QRISK3 and PRIMROSE) highlighted as potentially suitable. We repeated analyses after artificially increasing participant age to the mean age of the original algorithm studies to examine the impact of age on predictive performance.
We screened 7820 results, including 110 studies. All algorithms were developed in relatively older participants, and most were at high risk of bias. Three studies (QDiabetes, QRISK3 and PRIMROSE) featured psychiatric predictors. Age was more strongly weighted than other risk factors in each algorithm. In our exploratory analysis, calibration plots for all three algorithms implied a consistent systematic underprediction of cardiometabolic risk in the younger sample. After increasing participant age, calibration plots were markedly improved.
Existing cardiometabolic risk prediction algorithms cannot be recommended for young people with or at risk of psychosis. Existing algorithms may underpredict risk in young people, even in the face of other high-risk features. Recalibration of existing algorithms or a new tailored algorithm for the population is required.
心脏代谢风险预测算法在临床实践中很常见。患有精神病的年轻人患心脏代谢紊乱的风险很高。我们旨在研究现有的心脏代谢风险预测算法是否适用于患有精神病的年轻人。
我们对报告针对普通人群或精神病患者群体的心脏代谢风险预测算法的开发和验证的研究进行了系统评价和叙述性综合分析。此外,我们使用了阿冯纵向研究父母与儿童队列(ALSPAC)中505名18岁患有精神病或有患精神病风险的参与者的数据,以探索三种被认为可能适用的算法(QDiabetes、QRISK3和PRIMROSE)的性能。在将参与者年龄人为增加到原始算法研究的平均年龄后,我们重复进行分析,以检查年龄对预测性能的影响。
我们筛选了7820个结果,包括110项研究。所有算法都是在年龄相对较大的参与者中开发的,大多数存在较高的偏倚风险。三项研究(QDiabetes、QRISK3和PRIMROSE)纳入了精神病预测因素。在每种算法中,年龄的权重比其他风险因素更大。在我们的探索性分析中,所有三种算法的校准图都表明,较年轻样本中的心脏代谢风险存在一致的系统性预测不足。在增加参与者年龄后,校准图有了显著改善。
对于患有精神病或有患精神病风险的年轻人,不推荐使用现有的心脏代谢风险预测算法。即使面对其他高风险特征,现有算法也可能低估年轻人的风险。需要对现有算法进行重新校准或为该人群开发新的量身定制的算法。