Han Zhenqi, Liu Lizhuang
School of Information Science and Technology, Fudan University, Shanghai 200438, China.
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
Sensors (Basel). 2025 Jan 6;25(1):283. doi: 10.3390/s25010283.
Accurate 6D object pose estimation is critical for autonomous docking. To address the inefficiencies and inaccuracies associated with maximal cliques-based pose estimation methods, we propose a fast 6D pose estimation algorithm that integrates feature space and space compatibility constraints. The algorithm reduces the graph size by employing Laplacian filtering to resample high-frequency signal nodes. Then, the truncated Chamfer distance derived from fusion features and spatial compatibility constraints is used to evaluate the accuracy of candidate pose alignment between source and reference point clouds, and the optimal pose transformation matrix is selected for 6D pose estimation. Finally, a point-to-plane ICP algorithm is applied to refine the 6D pose estimation for autonomous docking. Experimental results demonstrate that the proposed algorithm achieves recall rates of 94.5%, 62.2%, and 99.1% on the 3DMatch, 3DLoMatch, and KITTI datasets, respectively. On the autonomous docking dataset, the algorithm yields rotation and localization errors of 0.96° and 5.82 cm, respectively, outperforming existing methods and validating the effectiveness of our approach.
精确的6D物体位姿估计对于自主对接至关重要。为了解决基于最大团的位姿估计方法的低效率和不准确性问题,我们提出了一种快速的6D位姿估计算法,该算法整合了特征空间和空间兼容性约束。该算法通过采用拉普拉斯滤波对高频信号节点进行重采样来减小图的大小。然后,利用融合特征和空间兼容性约束导出的截断倒角距离来评估源点云和参考点云之间候选位姿对齐的准确性,并选择最优位姿变换矩阵进行6D位姿估计。最后,应用点到平面ICP算法对自主对接的6D位姿估计进行优化。实验结果表明,该算法在3DMatch、3DLoMatch和KITTI数据集上的召回率分别达到了94.5%、62.2%和99.1%。在自主对接数据集上,该算法的旋转误差和定位误差分别为0.96°和5.82 cm,优于现有方法,验证了我们方法的有效性。