Department of Horticulture, Aburaihan Campus, University of Tehran, Iran.
Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran.
J Photochem Photobiol B. 2024 Oct;259:113004. doi: 10.1016/j.jphotobiol.2024.113004. Epub 2024 Aug 9.
This review comprehensively examines the phenomenon of photoinhibition in plants, focusing mainly on the intricate relationship between photodamage and photosystem II (PSII) repair and the role of PSII extrinsic proteins and protein phosphorylation in these processes. In natural environments, photoinhibition occurs together with a suite of concurrent stress factors, including extreme temperatures, drought and salinization. Photoinhibition, primarily caused by high irradiance, results in a critical imbalance between the rate of PSII photodamage and its repair. Central to this process is the generation of reactive oxygen species (ROS), which not only impair the photosynthetic apparatus first PSII but also play a signalling role in chloroplasts and other cellulular structures. ROS generated under stress conditions inhibit the repair of photodamaged PSII by suppressing D1 protein synthesis and affecting PSII protein phosphorylation. Furthermore, this review considers how environmental stressors exacerbate PSII damage by interfering with PSII repair primarily by reducing de novo protein synthesis. In addition to causing direct damage, these stressors also contribute to ROS production by restricting CO fixation, which also reduces the intensity of protein synthesis. This knowledge has significant implications for agricultural practices and crop improvement under stressful conditions.
这篇综述全面考察了植物中的光抑制现象,主要关注光破坏和光系统 II(PSII)修复之间的复杂关系,以及 PSII 外在蛋白和蛋白磷酸化在这些过程中的作用。在自然环境中,光抑制与一系列并发胁迫因子共同发生,包括极端温度、干旱和盐渍化。光抑制主要由高光强引起,导致 PSII 光破坏和修复之间的关键失衡。这一过程的核心是活性氧(ROS)的产生,ROS 不仅损害光合作用装置的首要 PSII,而且在叶绿体和其他细胞结构中发挥信号作用。胁迫条件下产生的 ROS 通过抑制 D1 蛋白合成和影响 PSII 蛋白磷酸化来抑制光破坏 PSII 的修复。此外,本综述还考虑了环境胁迫因子如何通过干扰 PSII 修复来加剧 PSII 损伤,主要是通过减少从头合成蛋白。这些胁迫因子不仅通过限制 CO2 固定来减少蛋白合成的强度,从而直接造成损伤,还通过限制 CO2 固定来促进 ROS 的产生。这些知识对于在胁迫条件下的农业实践和作物改良具有重要意义。