Zhang Bowen, Liu Xiaohui, Li Wei, Clausner André, Conzendorf Sylvia, Liu Jinxin, Posseckardt Juliane, Jost Birgit, Dong Renhao, Feng Xinliang, Liao Zhongquan, Zschech Ehrenfried
Fraunhofer Institute for Ceramic Technologies and System (IKTS), 01109 Dresden, Germany.
Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Dresden 01062, Germany.
Nanotechnology. 2024 Sep 3;35(47). doi: 10.1088/1361-6528/ad6e8a.
High-quality patterning determines the properties of patterned emerging two-dimensional (2D) conjugated polymers and is essential for potential applications in future electronic nanodevices. However, the most suitable patterning method for 2D polymers has yet to be determined because we still do not have a comprehensive understanding of their damage mechanisms by visualizing the structural modification that occurs during the patterning process. Here, the damage mechanisms during patterning of 2D polymers, induced by various patterning methods, are unveiled based on a systematic study of structural damage and edge morphology in an imine-based 2D polymer (polyimine). Patterning using a focused electron beam, focused ion beam (FIB) and mechanical carving is evaluated. The focused electron beam successively introduces a sputtering effect, knock-on displacement damage and massive radiolysis with increasing electron dose from9.46×107electrons nm-2to1.14×1010electrons nm-2. Successful patterning is enabled by knock-on damage but impeded by carbon contamination beyond a critical sample thickness. A FIB creates current-dependent edge morphologies and extensive damage from ion implantation caused by the tail of the unfocused beam. A precisely controlled tip can tear the polyimine film through grain boundaries and hence create a patterning edge with suitable edge roughness for certain application scenarios when beam damage is avoided. Taking structural damage and the resulting quantitative edge roughness into consideration, this study provides a detailed instruction on the proper patterning techniques for 2D crystalline polymers and paves the way for tailored intrinsic properties and device fabrication using these novel materials.
高质量的图案化决定了图案化新兴二维(2D)共轭聚合物的性能,对于未来电子纳米器件的潜在应用至关重要。然而,二维聚合物最合适的图案化方法尚未确定,因为我们仍然无法通过可视化图案化过程中发生的结构修饰来全面了解其损伤机制。在此,基于对基于亚胺的二维聚合物(聚亚胺)的结构损伤和边缘形态的系统研究,揭示了由各种图案化方法诱导的二维聚合物图案化过程中的损伤机制。评估了使用聚焦电子束、聚焦离子束(FIB)和机械雕刻进行图案化的情况。随着电子剂量从9.46×107电子·纳米-2增加到1.14×1010电子·纳米-2,聚焦电子束相继引入溅射效应、撞击位移损伤和大量辐射分解。撞击损伤实现了成功的图案化,但超过临界样品厚度时,碳污染会阻碍图案化。聚焦离子束会产生与电流相关的边缘形态,并由于未聚焦束的尾部导致离子注入造成广泛损伤。当避免束损伤时,精确控制的针尖可以通过晶界撕裂聚亚胺薄膜,从而为某些应用场景创建具有合适边缘粗糙度的图案化边缘。考虑到结构损伤和由此产生的定量边缘粗糙度,本研究为二维结晶聚合物的适当图案化技术提供了详细指导,并为使用这些新型材料定制固有特性和器件制造铺平了道路。