Suppr超能文献

微藻代谢工程促进精准营养和饮食调控。

Microalgal metabolic engineering facilitates precision nutrition and dietary regulation.

机构信息

School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong 999077, China.

Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; Shanghai Ocean University, Shanghai 201306, China.

出版信息

Sci Total Environ. 2024 Nov 15;951:175460. doi: 10.1016/j.scitotenv.2024.175460. Epub 2024 Aug 11.

Abstract

Microalgae have gained considerable attention as promising candidates for precision nutrition and dietary regulation due to their versatile metabolic capabilities. This review innovatively applies system metabolic engineering to utilize microalgae for precision nutrition and sustainable diets, encompassing the construction of microalgal cell factories, cell cultivation and practical application of microalgae. Manipulating the metabolic pathways and key metabolites of microalgae through multi-omics analysis and employing advanced metabolic engineering strategies, including ZFNs, TALENs, and the CRISPR/Cas system, enhances the production of valuable bioactive compounds, such as omega-3 fatty acids, antioxidants, and essential amino acids. This work begins by providing an overview of the metabolic diversity of microalgae and their ability to thrive in diverse environmental conditions. It then delves into the principles and strategies of metabolic engineering, emphasizing the genetic modifications employed to optimize microalgal strains for enhanced nutritional content. Enhancing PSY, BKT, and CHYB benefits carotenoid synthesis, whereas boosting ACCase, fatty acid desaturases, and elongases promotes polyunsaturated fatty acid production. Here, advancements in synthetic biology, evolutionary biology and machine learning are discussed, offering insights into the precision and efficiency of metabolic pathway manipulation. Also, this review highlights the potential impact of microalgal precision nutrition on human health and aquaculture. The optimized microalgal strains could serve as sustainable and cost-effective sources of nutrition for both human consumption and aquaculture feed, addressing the growing demand for functional foods and environmentally friendly feed alternatives. The tailored microalgal strains are anticipated to play a crucial role in meeting the nutritional needs of diverse populations and contributing to sustainable food production systems.

摘要

微藻因其多功能的代谢能力,作为精准营养和饮食调控的有前途的候选物引起了相当大的关注。本综述创新性地将系统代谢工程应用于利用微藻进行精准营养和可持续饮食,包括构建微藻细胞工厂、细胞培养和微藻的实际应用。通过多组学分析操纵微藻的代谢途径和关键代谢物,并采用先进的代谢工程策略,包括 ZFNs、TALENs 和 CRISPR/Cas 系统,可提高有价值的生物活性化合物(如 ω-3 脂肪酸、抗氧化剂和必需氨基酸)的产量。本工作首先概述了微藻的代谢多样性及其在各种环境条件下茁壮成长的能力。然后深入探讨了代谢工程的原理和策略,强调了用于优化微藻菌株以提高营养含量的遗传修饰。增强 PSY、BKT 和 CHYB 有益于类胡萝卜素合成,而增强 ACCase、脂肪酸去饱和酶和延伸酶则促进多不饱和脂肪酸的产生。这里讨论了合成生物学、进化生物学和机器学习的进展,为代谢途径操纵的精确性和效率提供了见解。此外,本综述还强调了微藻精准营养对人类健康和水产养殖的潜在影响。优化的微藻菌株可以作为人类消费和水产养殖饲料的可持续和具有成本效益的营养来源,满足对功能性食品和环保型饲料替代品的日益增长的需求。定制的微藻菌株有望在满足不同人群的营养需求和促进可持续食品生产系统方面发挥关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验