Suppr超能文献

利用智能手机和可穿戴设备在英国研究长新冠的生理表现和风险因素:一项纵向、公民科学、病例对照研究。

Physiological presentation and risk factors of long COVID in the UK using smartphones and wearable devices: a longitudinal, citizen science, case-control study.

机构信息

Department of Health Informatics and Biostatistics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.

Department of Health Informatics and Biostatistics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Computer Science, University of Sheffield, Sheffield, UK.

出版信息

Lancet Digit Health. 2024 Sep;6(9):e640-e650. doi: 10.1016/S2589-7500(24)00140-7. Epub 2024 Aug 12.

Abstract

BACKGROUND

The emergence of long COVID as a COVID-19 sequela was largely syndromic in characterisation. Digital health technologies such as wearable devices open the possibility to study this condition with passive, objective data in addition to self-reported symptoms. We aimed to quantify the prevalence and severity of symptoms across collected mobile health metrics over 12 weeks following COVID-19 diagnosis and to identify risk factors for the development of post-COVID-19 condition (also known as long COVID).

METHODS

The Covid Collab study was a longitudinal, self-enrolled, community, case-control study. We recruited participants from the UK through a smartphone app, media publications, and promotion within the Fitbit app between Aug 28, 2020, and May 31, 2021. Adults (aged ≥18 years) who reported a COVID-19 diagnosis with a positive antigen or PCR test before Feb 1, 2022, were eligible for inclusion. We compared a cohort of 1200 patients who tested positive for COVID-19 with a cohort of 3600 sex-matched and age-matched controls without a COVID-19 diagnosis. Participants could provide information on COVID-19 symptoms and mental health through self-reported questionnaires (active data) and commercial wearable fitness devices (passive data). Data were compared between cohorts at three periods following diagnosis: acute COVID-19 (0-4 weeks), ongoing COVID-19 (4-12 weeks), and post-COVID-19 (12-16 weeks). We assessed sociodemographic and mobile health risk factors for the development of long COVID (defined as either a persistent change in a physiological signal or self-reported symptoms for ≥12 weeks after COVID-19 diagnosis).

FINDINGS

By Aug 1, 2022, 17 667 participants had enrolled into the study, of whom 1200 (6·8%) cases and 3600 (20·4%) controls were included in the analyses. Compared with baseline (65 beats per min), resting heart rate increased significantly during the acute (0·47 beats per min; odds ratio [OR] 1·06 [95% CI 1·03-1·09]; p<0·0001), ongoing (0·99 beats per min; 1·11 [1·08-1·14]; p<0·0001), and post-COVID-19 (0·52 beats per min; 1·04 [1·02-1·07]; p=0·0017) phases. An increased level of historical activity in the period from 24 months to 6 months preceding COVID-19 diagnosis was protective against long COVID (coefficient -0·017 [95% CI -0·030 to -0·003]; p=0·015). Depressive symptoms were persistently elevated following COVID-19 (OR 1·03 [95% CI 1·01-1·06]; p=0·0033) and were a potential risk factor for developing long COVID (1·14 [1·07-1·22]; p<0·0001).

INTERPRETATION

Mobile health technologies and commercial wearable devices might prove to be a useful resource for tracking recovery from COVID-19 and the prevalence of its long-term sequelae, as well as representing an abundant source of historical data. Mental wellbeing can be impacted negatively for an extended period following COVID-19.

FUNDING

National Institute for Health and Care Research (NIHR), NIHR Maudsley Biomedical Research Centre, UK Research and Innovation, and Medical Research Council.

摘要

背景

长新冠作为 COVID-19 的一种后遗症,其特征主要是综合征性的。数字健康技术,如可穿戴设备,为我们提供了一种可能,除了自我报告的症状外,还可以通过被动、客观的数据来研究这种疾病。我们旨在通过收集 COVID-19 诊断后 12 周内的移动健康指标,量化症状的患病率和严重程度,并确定 COVID-19 后状况(也称为长新冠)的发展风险因素。

方法

Covid Collab 研究是一项纵向、自我注册的社区病例对照研究。我们通过智能手机应用程序、媒体出版物以及 Fitbit 应用程序中的推广,从英国招募参与者,招募时间为 2020 年 8 月 28 日至 2021 年 5 月 31 日。在 2022 年 2 月 1 日之前,报告 COVID-19 诊断且抗原或 PCR 检测呈阳性的成年人(年龄≥18 岁)有资格入组。我们将 1200 名 COVID-19 检测呈阳性的患者与 3600 名性别和年龄匹配且没有 COVID-19 诊断的对照组进行比较。参与者可以通过自我报告问卷(主动数据)和商业可穿戴健身设备(被动数据)提供有关 COVID-19 症状和心理健康的信息。我们在诊断后三个时期(急性 COVID-19 [0-4 周]、持续 COVID-19 [4-12 周]和 COVID-19 后 [12-16 周])比较了队列之间的数据。我们评估了社会人口统计学和移动健康风险因素,以确定长新冠的发展(定义为 COVID-19 诊断后≥12 周时生理信号或自我报告症状的持续变化)。

发现

截至 2022 年 8 月 1 日,已有 17667 名参与者注册了该研究,其中 1200 例(6.8%)病例和 3600 例(20.4%)对照组被纳入分析。与基线(65 次/分钟)相比,静息心率在急性期(0.47 次/分钟;优势比 [OR] 1.06 [95%CI 1.03-1.09];p<0.0001)、持续期(0.99 次/分钟;1.11 [1.08-1.14];p<0.0001)和 COVID-19 后(0.52 次/分钟;1.04 [1.02-1.07];p=0.0017)阶段均显著增加。COVID-19 诊断前 24 个月至 6 个月期间历史活动水平升高可预防长新冠(系数-0.017 [95%CI-0.030 至-0.003];p=0.015)。COVID-19 后抑郁症状持续升高(OR 1.03 [95%CI 1.01-1.06];p=0.0033),并且是发展长新冠的潜在风险因素(1.14 [1.07-1.22];p<0.0001)。

解释

移动健康技术和商业可穿戴设备可能成为跟踪 COVID-19 康复和其长期后遗症流行的有用资源,同时也是丰富的历史数据来源。COVID-19 后心理健康可能会受到负面影响,并持续较长时间。

资金

英国国家健康与保健研究院(NIHR)、NIHR Maudsley 生物医学研究中心、英国研究与创新署和医学研究理事会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d975/11832456/04833f6fd580/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验