Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland.
Department of Biochemistry, University of Oxford, OX1 3QU, Oxford, UK.
Nat Commun. 2024 Aug 13;15(1):6950. doi: 10.1038/s41467-024-50960-3.
Microbial ion-pumping rhodopsins (MRs) are extensively studied retinal-binding membrane proteins. However, their biogenesis, including oligomerisation and retinal incorporation, remains poorly understood. The bacterial green-light absorbing proton pump proteorhodopsin (GPR) has emerged as a model protein for MRs and is used here to address these open questions using cryo-electron microscopy (cryo-EM) and molecular dynamics (MD) simulations. Specifically, conflicting studies regarding GPR stoichiometry reported pentamer and hexamer mixtures without providing possible assembly mechanisms. We report the pentameric and hexameric cryo-EM structures of a GPR mutant, uncovering the role of the unprocessed N-terminal signal peptide in the assembly of hexameric GPR. Furthermore, certain proteorhodopsin-expressing bacteria lack retinal biosynthesis pathways, suggesting that they scavenge the cofactor from their environment. We shed light on this hypothesis by solving the cryo-EM structure of retinal-free proteoopsin, which together with mass spectrometry and MD simulations suggests that decanoate serves as a temporary placeholder for retinal in the chromophore binding pocket. Further MD simulations elucidate possible pathways for the exchange of decanoate and retinal, offering a mechanism for retinal scavenging. Collectively, our findings provide insights into the biogenesis of MRs, including their oligomeric assembly, variations in protomer stoichiometry and retinal incorporation through a potential cofactor scavenging mechanism.
微生物离子泵视紫红质(MRs)是广泛研究的视网膜结合膜蛋白。然而,它们的生物发生,包括寡聚化和视网膜掺入,仍然知之甚少。细菌中吸收绿光的质子泵视蛋白(GPR)已成为 MRs 的模型蛋白,本文使用低温电子显微镜(cryo-EM)和分子动力学(MD)模拟来解决这些未解决的问题。具体来说,关于 GPR 化学计量的相互矛盾的研究报告了五聚体和六聚体混合物,而没有提供可能的组装机制。我们报告了 GPR 突变体的五聚体和六聚体 cryo-EM 结构,揭示了未加工的 N 端信号肽在六聚体 GPR 组装中的作用。此外,某些表达视蛋白的细菌缺乏视黄醛生物合成途径,这表明它们从环境中摄取辅因子。我们通过解决无视黄醛的蛋白视紫红质的 cryo-EM 结构来阐明这一假设,该结构与质谱和 MD 模拟一起表明癸酸可作为视黄醛在发色团结合口袋中的临时替代品。进一步的 MD 模拟阐明了癸酸和视黄醛交换的可能途径,为视黄醛的摄取提供了一种机制。总的来说,我们的研究结果为 MRs 的生物发生提供了深入的了解,包括它们的寡聚体组装、原聚体化学计量和通过潜在的辅因子摄取机制掺入视网膜的变化。