Suppr超能文献

实时视觉智能用于药品包装缺陷检测。

Real-time visual intelligence for defect detection in pharmaceutical packaging.

机构信息

School of Computing, SASTRA Deemed University, Thanjavur, 613401, India.

School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, 632014, India.

出版信息

Sci Rep. 2024 Aug 13;14(1):18811. doi: 10.1038/s41598-024-69701-z.

Abstract

Defect detection in pharmaceutical blister packages is the most challenging task to get an accurate result in detecting defects that arise in tablets while manufacturing. Conventional defect detection methods include human intervention to check the quality of tablets within the blister packages, which is inefficient, time-consuming, and increases labor costs. To mitigate this issue, the YOLO family is primarily used in many industries for real-time defect detection in continuous production. To enhance the feature extraction capability and reduce the computational overhead in a real-time environment, the CBS-YOLOv8 is proposed by enhancing the YOLOv8 model. In the proposed CBS-YOLOv8, coordinate attention is introduced to improve the feature extraction capability by capturing the spatial and cross-channel information and also maintaining the long-range dependencies. The BiFPN (weighted bi-directional feature pyramid network) is also introduced in YOLOv8 to enhance the feature fusion at each convolution layer to avoid more precise information loss. The model's efficiency is enhanced through the implementation of SimSPPF (simple spatial pyramid pooling fast), which reduces computational demands and model complexity, resulting in improved speed. A custom dataset containing defective tablet images is used to train the proposed model. The performance of the CBS-YOLOv8 model is then evaluated by comparing it with various other models. Experimental results on the custom dataset reveal that the CBS-YOLOv8 model achieves a mAP of 97.4% and an inference speed of 79.25 FPS, outperforming other models. The proposed model is also evaluated on SESOVERA-ST saline bottle fill level monitoring dataset achieved the mAP50 of 99.3%. This demonstrates that CBS-YOLOv8 provides an optimized inspection process, enabling prompt detection and correction of defects, thus bolstering quality assurance practices in manufacturing settings.

摘要

药品泡罩包装中的缺陷检测是一项极具挑战性的任务,目的是在制造过程中准确检测出片剂中出现的缺陷。传统的缺陷检测方法包括人工干预来检查泡罩包装内的片剂质量,这种方法效率低下、耗时且增加了劳动力成本。为了解决这个问题,YOLO 系列在许多行业中主要用于实时检测连续生产中的缺陷。为了提高特征提取能力并减少实时环境中的计算开销,通过增强 YOLOv8 模型提出了 CBS-YOLOv8。在提出的 CBS-YOLOv8 中,引入坐标注意力来提高特征提取能力,通过捕获空间和跨通道信息并保持长程依赖关系来实现。在 YOLOv8 中还引入了 BiFPN(加权双向特征金字塔网络)来增强每个卷积层的特征融合,以避免更精确的信息丢失。通过实现 SimSPPF(简单空间金字塔池快速)来提高模型的效率,从而减少计算需求和模型复杂度,提高速度。使用包含缺陷片剂图像的自定义数据集来训练所提出的模型。然后通过与其他各种模型进行比较来评估 CBS-YOLOv8 模型的性能。在自定义数据集上的实验结果表明,CBS-YOLOv8 模型的 mAP 达到 97.4%,推理速度达到 79.25 FPS,优于其他模型。所提出的模型还在 SESOVERA-ST 盐水瓶灌装水平监测数据集上进行了评估,达到了 mAP50 的 99.3%。这表明 CBS-YOLOv8 提供了优化的检查过程,能够及时检测和纠正缺陷,从而增强了制造环境中的质量保证实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f5d/11322668/5d1559ba36a7/41598_2024_69701_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验