Suppr超能文献

YOLO-PBESW:一种用于高效识别微流控液滴中吲哚美辛晶体形态的轻量级深度学习模型。

YOLO-PBESW: A Lightweight Deep Learning Model for the Efficient Identification of Indomethacin Crystal Morphologies in Microfluidic Droplets.

作者信息

Wei Jiehan, Liang Jianye, Song Jun, Zhou Peipei

机构信息

School of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China.

出版信息

Micromachines (Basel). 2024 Sep 6;15(9):1136. doi: 10.3390/mi15091136.

Abstract

Crystallization is important to the pharmaceutical, the chemical, and the materials fields, where the morphology of crystals is one of the key factors affecting the quality of crystallization. High-throughput screening based on microfluidic droplets is a potent technique to accelerate the discovery and development of new crystal morphologies with active pharmaceutical ingredients. However, massive crystal morphologies' datum needs to be identified completely and accurately, which is time-consuming and labor-intensive. Therefore, effective morphologies' detection and small-target tracking are essential for high-efficiency experiments. In this paper, a new improved algorithm YOLOv8 (YOLO-PBESW) for detecting indomethacin crystals with different morphologies is proposed. We enhanced its capability in detecting small targets through the integration of a high-resolution feature layer P2, and the adoption of a BiFPN structure. Additionally, in this paper, adding the EMA mechanism before the P2 detection head was implemented to improve network attention towards global features. Furthermore, we utilized SimSPPF to replace SPPF to mitigate computational costs and reduce inference time. Lastly, the CIoU loss function was substituted with WIoUv3 to improve detection performance. The experimental findings indicate that the enhanced YOLOv8 model attained advancements, achieving AP metrics of 93.3%, 77.6%, 80.2%, and 99.5% for crystal wire, crystal rod, crystal sheet, and jelly-like phases, respectively. The model also achieved a precision of 85.2%, a recall of 83.8%, and an F1 score of 84.5%, with a mAP of 87.6%. In terms of computational efficiency, the model's dimensions and operational efficiency are reported as 5.46 MB, and it took 12.89 ms to process each image with a speed of 77.52 FPS. Compared with state-of-the-art lightweight small object detection models such as the FFCA-YOLO series, our proposed YOLO-PBESW model achieved improvements in detecting indomethacin crystal morphologies, particularly for crystal sheets and crystal rods. The model demonstrated AP values that exceeded L-FFCA-YOLO by 7.4% for crystal sheets and 3.9% for crystal rods, while also delivering a superior F1-score. Furthermore, YOLO-PBESW maintained a lower computational complexity, with parameters of only 11.8 GFLOPs and 2.65 M, and achieved a higher FPS. These outcomes collectively demonstrate that our method achieved a balance between precision and computational speed.

摘要

结晶对于制药、化学和材料领域都很重要,在这些领域中,晶体的形态是影响结晶质量的关键因素之一。基于微流控液滴的高通量筛选是一种有效的技术,可加速具有活性药物成分的新晶体形态的发现和开发。然而,大量晶体形态的数据需要被完整且准确地识别,这既耗时又费力。因此,有效的形态检测和小目标跟踪对于高效实验至关重要。本文提出了一种新的改进算法YOLOv8(YOLO-PBESW),用于检测不同形态的吲哚美辛晶体。我们通过集成高分辨率特征层P2和采用BiFPN结构来增强其检测小目标的能力。此外,本文在P2检测头之前引入了EMA机制,以提高网络对全局特征的关注。此外,我们使用SimSPPF代替SPPF来降低计算成本并减少推理时间。最后,用WIoUv3替代CIoU损失函数以提高检测性能。实验结果表明,增强后的YOLOv8模型取得了进展,对于晶线、晶棒、晶片和果冻状相的晶体,其AP指标分别达到了93.3%、77.6%、80.2%和99.5%。该模型还实现了85.2%的精度、83.8%的召回率和84.5%的F1分数,平均精度均值为87.6%。在计算效率方面,该模型的尺寸和运行效率分别为5.46 MB,处理每张图像需要12.89 ms,速度为77.52 FPS。与诸如FFCA-YOLO系列等最先进的轻量级小目标检测模型相比,我们提出的YOLO-PBESW模型在检测吲哚美辛晶体形态方面取得了改进,特别是对于晶片和晶棒。该模型的AP值在晶片方面比L-FFCA-YOLO高出7.4%,在晶棒方面高出3.9%,同时还提供了更高的F1分数。此外,YOLO-PBESW保持了较低的计算复杂度,参数仅为11.8 GFLOPs和2.65 M,并实现了更高的FPS。这些结果共同表明,我们的方法在精度和计算速度之间取得了平衡

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7acf/11433745/3521709d1851/micromachines-15-01136-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验