Suppr超能文献

使用机器学习算法将分析物的物理化学性质与溶剂的汉森溶解度参数相关联,以预测合适的萃取溶剂。

Correlating physico-chemical properties of analytes with Hansen solubility parameters of solvents using machine learning algorithm for predicting suitable extraction solvent.

作者信息

Mostafa Eman A, Azim Mohammad Abdul, ElZaher Asmaa A, ElKady Ehab F, Fouad Marwa A, Ghazy Fatma H, Radi Esraa A, El Makarim Saleh Mahmoud Abo, El Kerdawy Ahmed M

机构信息

Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., P.O. Box 11562, Cairo, Egypt.

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Newgiza University (NGU), Newgiza, km 22 Cairo-Alexandria Desert Road, Cairo, Egypt.

出版信息

Sci Rep. 2024 Aug 13;14(1):18741. doi: 10.1038/s41598-024-68981-9.

Abstract

Artificial neural networks (ANNs) are biologically inspired algorithms designed to simulate the way in which the human brain processes information. In sample preparation for bioanalysis, liquid-liquid extraction (LLE) represents an important step with the extraction solvent selection is the key laborious step. In the current work, a robust and reliable ANNs model for LLE solvent prediction was generated which could predict the suitable solvent for analyte extraction. The developed ANNs model takes a set of chosen descriptors for the cited analyte as an input and predicts the corresponding Hansen solubility parameters of the suitable extraction solvent as a model output. Then, from the solvent combination's appendix, the analyst can identify the proposed extraction solvents' combination for the cited analyte easily and efficiently. For the experimental validation of the model prediction capabilities, twenty structurally diverse drugs belonging to different pharmacological classes were extracted from human plasma. The extraction process was performed using the predicted extraction solvent combination for each drug and quantitively estimated by HPLC/UV methods to assess their extraction recovery. The developed LLE solvent prediction model is in- line with the global trend towards green chemistry since it limits the consumption of organic solvents.

摘要

人工神经网络(ANNs)是受生物启发而设计的算法,旨在模拟人类大脑处理信息的方式。在生物分析的样品制备中,液液萃取(LLE)是重要的一步,其中萃取溶剂的选择是关键且费力的步骤。在当前工作中,生成了一个用于LLE溶剂预测的强大且可靠的人工神经网络模型,该模型可以预测适合分析物萃取的溶剂。所开发的人工神经网络模型将一组为所述分析物选择的描述符作为输入,并预测适合萃取溶剂的相应汉森溶解度参数作为模型输出。然后,根据溶剂组合附录,分析人员可以轻松高效地确定针对所述分析物建议的萃取溶剂组合。为了对模型预测能力进行实验验证,从人血浆中提取了20种结构不同、属于不同药理类别的药物。使用针对每种药物预测的萃取溶剂组合进行萃取过程,并通过HPLC/UV方法进行定量评估,以评估它们的萃取回收率。所开发的LLE溶剂预测模型符合绿色化学的全球趋势,因为它限制了有机溶剂的消耗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d06/11322549/1fbacfe2572a/41598_2024_68981_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验