Suppr超能文献

一种揭示功能微生物基因组复杂性的新型层次网络方法。

A novel hierarchical network-based approach to unveil the complexity of functional microbial genome.

机构信息

University of Michigan, Ann Arbor, USA.

The State Key Laboratory of Freshwater Ecology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.

出版信息

BMC Genomics. 2024 Aug 14;25(1):786. doi: 10.1186/s12864-024-10692-6.

Abstract

Biological networks serve a crucial role in elucidating intricate biological processes. While interspecies environmental interactions have been extensively studied, the exploration of gene interactions within species, particularly among individual microorganisms, is less developed. The increasing amount of microbiome genomic data necessitates a more nuanced analysis of microbial genome structures and functions. In this context, we introduce a complex structure using higher-order network theory, "Solid Motif Structures (SMS)", via a hierarchical biological network analysis of genomes within the same genus, effectively linking microbial genome structure with its function. Leveraging 162 high-quality genomes of Microcystis, a key freshwater cyanobacterium within microbial ecosystems, we established a genome structure network. Employing deep learning techniques, such as adaptive graph encoder, we uncovered 27 critical functional subnetworks and their associated SMSs. Incorporating metagenomic data from seven geographically distinct lakes, we conducted an investigation into Microcystis' functional stability under varying environmental conditions, unveiling unique functional interaction models for each lake. Our work compiles these insights into an extensive resource repository, providing novel perspectives on the functional dynamics within Microcystis. This research offers a hierarchical network analysis framework for understanding interactions between microbial genome structures and functions within the same genus.

摘要

生物网络在阐明复杂的生物过程中起着至关重要的作用。虽然物种间的环境相互作用已经得到了广泛的研究,但对物种内基因相互作用的探索,特别是在单个微生物之间,还不够发达。微生物组基因组数据的不断增加需要更细致地分析微生物基因组的结构和功能。在这种情况下,我们通过对同一属内的基因组进行层次化的生物网络分析,引入了一种复杂的结构,即“固态基序结构 (SMS)”,通过高阶网络理论,有效地将微生物基因组结构与其功能联系起来。我们利用微生物生态系统中关键的淡水蓝藻微囊藻的 162 个高质量基因组,建立了一个基因组结构网络。通过使用自适应图编码器等深度学习技术,我们揭示了 27 个关键的功能子网络及其相关的 SMS。我们整合了来自七个地理位置不同的湖泊的宏基因组数据,研究了微囊藻在不同环境条件下的功能稳定性,为每个湖泊揭示了独特的功能相互作用模型。我们的工作将这些见解汇编成一个广泛的资源库,为理解同一属内微生物基因组结构和功能之间的相互作用提供了新的视角。这项研究为理解同一属内微生物基因组结构和功能之间的相互作用提供了一个层次化的网络分析框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c4a/11323692/0b3db8a7485e/12864_2024_10692_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验