Matchado Monica Steffi, Lauber Michael, Reitmeier Sandra, Kacprowski Tim, Baumbach Jan, Haller Dirk, List Markus
Chair of Experimental Bioinformatics, Technical University of Munich, 85354 Freising, Germany.
ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany.
Comput Struct Biotechnol J. 2021 May 4;19:2687-2698. doi: 10.1016/j.csbj.2021.05.001. eCollection 2021.
Microorganisms including bacteria, fungi, viruses, protists and archaea live as communities in complex and contiguous environments. They engage in numerous inter- and intra- kingdom interactions which can be inferred from microbiome profiling data. In particular, network-based approaches have proven helpful in deciphering complex microbial interaction patterns. Here we give an overview of state-of-the-art methods to infer intra-kingdom interactions ranging from simple correlation- to complex conditional dependence-based methods. We highlight common biases encountered in microbial profiles and discuss mitigation strategies employed by different tools and their trade-off with increased computational complexity. Finally, we discuss current limitations that motivate further method development to infer inter-kingdom interactions and to robustly and comprehensively characterize microbial environments in the future.
包括细菌、真菌、病毒、原生生物和古细菌在内的微生物在复杂且连续的环境中以群落形式生存。它们参与了众多的界内和界间相互作用,这些相互作用可以从微生物组分析数据中推断出来。特别是,基于网络的方法已被证明有助于解读复杂的微生物相互作用模式。在这里,我们概述了从简单的基于相关性到复杂的基于条件依赖性的方法来推断界内相互作用的最新方法。我们强调了微生物谱中遇到的常见偏差,并讨论了不同工具所采用的缓解策略以及它们与增加的计算复杂性之间的权衡。最后,我们讨论了当前的局限性,这些局限性促使未来进一步开发推断界间相互作用以及稳健而全面地表征微生物环境的方法。