Suppr超能文献

按出生孕周分层的英国小学儿童特殊教育需求提供情况对医院利用、学业成绩和缺勤情况的影响:一项目标试验模拟研究方案

Impact of special educational needs provision on hospital utilisation, school attainment and absences for children in English primary schools stratified by gestational age at birth: A target trial emulation study protocol.

作者信息

Nguyen Vincent G, Lewis Kate Marie, Gilbert Ruth, Dearden Lorraine, De Stavola Bianca

机构信息

Institute of Child Health, University College London, London, England, WC1N 1EH, UK.

Social Research Institute, University College London, London, England, WC1H 0AL, UK.

出版信息

NIHR Open Res. 2023 Nov 21;3:59. doi: 10.3310/nihropenres.13471.1. eCollection 2023.

Abstract

INTRODUCTION

One third of children in English primary schools have additional learning support called special educational needs (SEN) provision, but children born preterm are more likely to have SEN than those born at term. We aim to assess the impact of SEN provision on health and education outcomes in children grouped by gestational age at birth.

METHODS

We will analyse linked administrative data for England using the Education and Child Health Insights from Linked Data (ECHILD) database. A target trial emulation approach will be used to specify data extraction from ECHILD, comparisons of interest and our analysis plan. Our target population is all children enrolled in year one of state-funded primary school in England who were born in an NHS hospital in England between 2003 and 2008, grouped by gestational age at birth (extremely preterm (24-<28 weeks), very preterm (28-<32 weeks), moderately preterm (32-<34 weeks), late preterm (34-<37 weeks) and full term (37-<42 weeks). The intervention of interest will comprise categories of SEN provision (including none) during year one (age five/six). The outcomes of interest are rates of unplanned hospital utilisation, educational attainment, and absences by the end of primary school education (year six, age 11). We will triangulate results from complementary estimation methods including the naïve estimator, multivariable regression, g-formula, inverse probability weighting, inverse probability weighting with regression adjustment and instrumental variables, along with a variety for a variety of causal contrasts (average treatment effect, overall, and on the treated/not treated).

ETHICS AND DISSEMINATION

We have existing research ethics approval for analyses of the ECHILD database described in this protocol. We will disseminate our findings to diverse audiences (academics, relevant government departments, service users and providers) through seminars, peer-reviewed publications, short briefing reports and infographics for non-academics (published on the study website).

摘要

引言

在英国小学,三分之一的儿童获得了名为特殊教育需求(SEN)提供的额外学习支持,但早产儿童比足月儿更有可能有特殊教育需求。我们旨在评估特殊教育需求提供对按出生时胎龄分组的儿童健康和教育成果的影响。

方法

我们将使用来自关联数据的教育与儿童健康洞察(ECHILD)数据库分析英国的关联行政数据。将采用目标试验模拟方法来指定从ECHILD中提取的数据、感兴趣的比较以及我们的分析计划。我们的目标人群是2003年至2008年期间在英国国民保健服务(NHS)医院出生、在英国公立小学一年级入学的所有儿童,按出生时胎龄分组(极早产(24 - <28周)、极早早产(28 - <32周)、中度早产(32 - <34周)、晚期早产(34 - <37周)和足月儿(37 - <42周))。感兴趣的干预措施将包括一年级(五岁/六岁)期间特殊教育需求提供的类别(包括无)。感兴趣的结果是计划外住院使用率、学业成绩以及小学教育结束时(六年级,十一岁)的缺勤率。我们将对包括朴素估计器、多变量回归、g公式、逆概率加权、回归调整的逆概率加权和工具变量在内的互补估计方法的结果进行三角测量,以及针对各种因果对比(平均治疗效果、总体以及对治疗/未治疗者)。

伦理与传播

我们对本方案中描述的ECHILD数据库分析已有现有的研究伦理批准。我们将通过研讨会、同行评审出版物、简短简报报告以及面向非专业人士的信息图表(发布在研究网站上),向不同受众(学者、相关政府部门、服务使用者和提供者)传播我们的研究结果。

相似文献

5
Gestational age at birth and academic attainment in primary and secondary school in England: Evidence from a national cohort study.
PLoS One. 2022 Aug 17;17(8):e0271952. doi: 10.1371/journal.pone.0271952. eCollection 2022.
7
Academic attainment and special educational needs in extremely preterm children at 11 years of age: the EPICure study.
Arch Dis Child Fetal Neonatal Ed. 2009 Jul;94(4):F283-9. doi: 10.1136/adc.2008.152793. Epub 2009 Mar 12.
9
Educational outcomes associated with persistent speech disorder.
Int J Lang Commun Disord. 2021 Mar;56(2):299-312. doi: 10.1111/1460-6984.12599. Epub 2021 Feb 2.
10
Evaluating the real-world implementation of the Family Nurse Partnership in England: a data linkage study.
Health Soc Care Deliv Res. 2024 May;12(11):1-223. doi: 10.3310/BVDW6447.

本文引用的文献

1
Generalized Difference-in-Differences.
Epidemiology. 2023 Mar 1;34(2):167-174. doi: 10.1097/EDE.0000000000001568. Epub 2022 Nov 29.
2
Burden of Comorbidities and Healthcare Resource Utilization Among Medicaid-Enrolled Extremely Premature Infants.
J Health Econ Outcomes Res. 2022 Dec 23;9(2):147-155. doi: 10.36469/001c.38847. eCollection 2022.
3
Target Trial Emulation: A Framework for Causal Inference From Observational Data.
JAMA. 2022 Dec 27;328(24):2446-2447. doi: 10.1001/jama.2022.21383.
6
Data Resource Profile: The Education and Child Health Insights from Linked Data (ECHILD) Database.
Int J Epidemiol. 2022 Feb 18;51(1):17-17f. doi: 10.1093/ije/dyab149.
7
Introduction to computational causal inference using reproducible Stata, R, and Python code: A tutorial.
Stat Med. 2022 Jan 30;41(2):407-432. doi: 10.1002/sim.9234. Epub 2021 Oct 28.
8
Academic achievement and needs of school-aged children born with selected congenital anomalies: A systematic review and meta-analysis.
Birth Defects Res. 2021 Dec 1;113(20):1431-1462. doi: 10.1002/bdr2.1961. Epub 2021 Oct 21.
9
Linking education and hospital data in England: linkage process and quality.
Int J Popul Data Sci. 2021 Sep 16;6(1):1671. doi: 10.23889/ijpds.v6i1.1671. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验