Suppr超能文献

血清生物标志物动态预测肿瘤治疗患者心血管事件风险。一项多中心观察性研究。

Serum Biomarkers to Dynamically Predict the Risk of Cardiovascular Events in Patients under Oncologic Therapy. A Multicenter Observational Study.

作者信息

Provinciali Nicoletta, Piccininno Marco, Siri Giacomo, Gennari Alessandra, Antonucci Giancarlo, Ricci Damiano, Devoto Emmanuela, Miceli Roberta, Cortesi Pietro, Pazzi Chiara, Nanni Oriana, Mannozzi Francesca, Pastina Ilaria, Messuti Luciana, Bengala Carmelo, Frassineti Giovanni Luca, Cattrini Carlo, Fava Marianna, Buttiron Webber Tania, Briata Irene Maria, Corradengo Davide, DeCensi Andrea, Puntoni Matteo

机构信息

Division of Medical Oncology, Ente Ospedaliero Ospedali Galliera, 16128 Genoa, Italy.

Department of Experimental Medicine, University of Genoa, 16126 Genoa, Italy.

出版信息

Rev Cardiovasc Med. 2024 Jul 9;25(7):256. doi: 10.31083/j.rcm2507256. eCollection 2024 Jul.

Abstract

BACKGROUND

Serum biomarkers have been investigated as predictive risk factors for cancer-related cardiovascular (CV) risk, but their analysis is limited to their baseline level rather than their overtime change. Besides historically validated causal factors, inflammatory and oxidative stress (OS) related markers seem to be correlated to CV events but this association needs to be further explored. We conducted an observational study to determine the predictive role of the longitudinal changes of commonly used and OS-related biomarkers during the cancer treatment period.

METHODS

Patients undergoing anticancer therapies, either aged 75+ years old or younger with an increased CV risk according to European Society of Cardiology guidelines, were enrolled. We assessed the predictive value of biomarkers for the onset of CV events at baseline and during therapy using Cox model, Subpopulation Treatment-Effect Pattern Plot (STEPP) method and repeated measures analysis of longitudinal data.

RESULTS

From April 2018 to August 2021, 182 subjects were enrolled, of whom 168 were evaluable. Twenty-eight CV events were recorded after a median follow up of 9.2 months (Interquartile range, IQR: 5.1-14.7). Fibrinogen and troponin levels were independent risk factors for CV events. Specifically, patients with higher than the median levels of fibrinogen and troponin at baseline had higher risk compared with patients with values below the medians, hazard ratio (HR) = 3.95, 95% CI, 1.25-12.45 and HR = 2.48, 0.67-9.25, respectively. STEPP analysis applied to Cox model showed that cumulative event-free survival at 18 and 24 months worsened almost linearly as median values of fibrinogen increased. Repeated measure analysis showed an increase over time of D-Dimer (-interaction event*time = 0.08), systolic ( 0.07) and diastolic ( 0.05) blood pressure and a decrease of left ventricular ejection fraction ( 0.15) for subjects who experienced a CV event.

CONCLUSIONS

Higher levels of fibrinogen and troponin at baseline and an increase over time of D-Dimer and blood pressure are associated to a higher risk of CV events in patients undergoing anticancer therapies. The role of OS in fibrinogen increase and the longitudinal monitoring of D-dimer and blood pressure levels should be further assessed.

摘要

背景

血清生物标志物已被作为癌症相关心血管(CV)风险的预测危险因素进行研究,但其分析仅限于基线水平,而非随时间的变化。除了历史上已验证的因果因素外,炎症和氧化应激(OS)相关标志物似乎与心血管事件相关,但这种关联需要进一步探索。我们进行了一项观察性研究,以确定常用生物标志物和OS相关生物标志物在癌症治疗期间的纵向变化的预测作用。

方法

纳入接受抗癌治疗的患者,这些患者年龄在75岁及以上或根据欧洲心脏病学会指南心血管风险增加的较年轻患者。我们使用Cox模型、亚组治疗效果模式图(STEPP)方法和纵向数据的重复测量分析,评估了基线和治疗期间生物标志物对心血管事件发生的预测价值。

结果

2018年4月至2021年8月,共纳入182名受试者,其中168名可评估。中位随访9.2个月(四分位间距,IQR:5.1 - 14.7)后记录了28例心血管事件。纤维蛋白原和肌钙蛋白水平是心血管事件的独立危险因素。具体而言,基线时纤维蛋白原和肌钙蛋白水平高于中位数的患者与低于中位数的患者相比,风险更高,风险比(HR)分别为3.95,95%可信区间(CI)为1.25 - 12.45和HR = 2.48,0.67 - 9.25。应用于Cox模型的STEPP分析表明,随着纤维蛋白原中位数的增加,18个月和24个月时的累积无事件生存率几乎呈线性恶化。重复测量分析显示,发生心血管事件的受试者的D - 二聚体(-交互作用事件*时间 = 0.08)、收缩压(0.07)和舒张压(0.05)随时间增加,左心室射血分数降低(0.15)。

结论

基线时较高的纤维蛋白原和肌钙蛋白水平以及D - 二聚体和血压随时间的增加与接受抗癌治疗的患者发生心血管事件的较高风险相关。应进一步评估OS在纤维蛋白原增加中的作用以及D - 二聚体和血压水平的纵向监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e19/11317344/207112cd4259/2153-8174-25-7-256-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验