Suppr超能文献

多模态数据整合增强对疑似阻塞性睡眠呼吸暂停的新发系统性动脉高血压患者的纵向预测。

Multimodal Data Integration Enhance Longitudinal Prediction of New-Onset Systemic Arterial Hypertension Patients with Suspected Obstructive Sleep Apnea.

作者信息

Yang Yi, Jiang Haibing, Yang Haitao, Hou Xiangeng, Wu Tingting, Pan Ying, Xie Xiang

机构信息

Xinjiang Medical University, 830011 Urumqi, Xinjiang, China.

Department of Cardiology, The Fourth Affiliated Hospital of Xinjiang Medical University, 830099 Urumqi, Xinjiang, China.

出版信息

Rev Cardiovasc Med. 2024 Jul 10;25(7):258. doi: 10.31083/j.rcm2507258. eCollection 2024 Jul.

Abstract

BACKGROUND

It is crucial to accurately predict the disease progression of systemic arterial hypertension in order to determine the most effective therapeutic strategy. To achieve this, we have employed a multimodal data-integration approach to predict the longitudinal progression of new-onset systemic arterial hypertension patients with suspected obstructive sleep apnea (OSA) at the individual level.

METHODS

We developed and validated a predictive nomogram model that utilizes multimodal data, consisting of clinical features, laboratory tests, and sleep monitoring data. We assessed the probabilities of major adverse cardiac and cerebrovascular events (MACCEs) as scores for participants in longitudinal cohorts who have systemic arterial hypertension and suspected OSA. In this cohort study, MACCEs were considered as a composite of cardiac mortality, acute coronary syndrome and nonfatal stroke. The least absolute shrinkage and selection operator (LASSO) regression and multiple Cox regression analyses were performed to identify independent risk factors for MACCEs among these patients.

RESULTS

448 patients were randomly assigned to the training cohort while 189 were assigned to the verification cohort. Four clinical variables were enrolled in the constructed nomogram: age, diabetes mellitus, triglyceride, and apnea-hypopnea index (AHI). This model accurately predicted 2-year and 3-year MACCEs, achieving an impressive area under the receiver operating characteristic (ROC) curve of 0.885 and 0.784 in the training cohort, respectively. In the verification cohort, the performance of the nomogram model had good discriminatory power, with an area under the ROC curve of 0.847 and 0.729 for 2-year and 3-year MACCEs, respectively. The correlation between predicted and actual observed MACCEs was high, provided by a calibration plot, for training and verification cohorts.

CONCLUSIONS

Our study yielded risk stratification for systemic arterial hypertension patients with suspected OSA, which can be quantified through the integration of multimodal data, thus highlighting OSA as a spectrum of disease. This prediction nomogram could be instrumental in defining the disease state and long-term clinical outcomes.

摘要

背景

准确预测系统性动脉高血压的疾病进展对于确定最有效的治疗策略至关重要。为实现这一目标,我们采用了多模态数据整合方法,以在个体层面预测疑似阻塞性睡眠呼吸暂停(OSA)的新发系统性动脉高血压患者的纵向病情进展。

方法

我们开发并验证了一种预测列线图模型,该模型利用由临床特征、实验室检查和睡眠监测数据组成的多模态数据。我们将主要不良心脑血管事件(MACCE)的概率评估为患有系统性动脉高血压和疑似OSA的纵向队列参与者的得分。在这项队列研究中,MACCE被视为心脏死亡、急性冠状动脉综合征和非致命性卒中的综合指标。进行了最小绝对收缩和选择算子(LASSO)回归及多重Cox回归分析,以确定这些患者中MACCE的独立危险因素。

结果

448例患者被随机分配至训练队列,189例被分配至验证队列。构建的列线图纳入了四个临床变量:年龄、糖尿病、甘油三酯和呼吸暂停低通气指数(AHI)。该模型准确预测了2年和3年的MACCE,在训练队列中,受试者工作特征(ROC)曲线下面积分别达到了令人印象深刻的0.885和0.784。在验证队列中,列线图模型具有良好的鉴别能力,2年和3年MACCE的ROC曲线下面积分别为0.847和0.729。校准图显示,训练队列和验证队列中预测的与实际观察到的MACCE之间的相关性很高。

结论

我们的研究为疑似OSA的系统性动脉高血压患者提供了风险分层,可通过多模态数据整合进行量化,从而突出了OSA作为一种疾病谱的特点。这种预测列线图可能有助于明确疾病状态和长期临床结局。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验