Department of Cardiology, First Affiliated Hospital of Bengbu Medical University, Bengbu, China.
Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
J Glob Health. 2024 May 17;14:04103. doi: 10.7189/jgh.14.04103.
Obstructive sleep apnea syndrome (OSAS), a prevalent condition, often coexists with intricate metabolic issues and is frequently associated with negative cardiovascular outcomes. We developed a longitudinal prediction model integrating multimodal data for cardiovascular risk stratification of patients with an initial diagnosis of OSAS.
We reviewed the data of patients with new-onset OSAS who underwent diagnostic polysomnography between 2018-19. Patients were treated using standard treatment regimens according to clinical practice guidelines.
Over a median follow-up of 32 months, 98/729 participants (13.4%) experienced our composite outcome. At a ratio of 7:3, cases were randomly divided into development (n = 510) and validation (n = 219) cohorts. A prediction nomogram was created using six clinical factors - sex, age, diabetes mellitus, history of coronary artery disease, triglyceride-glucose index, and apnea-hypopnea index. The prediction nomogram showed excellent discriminatory power, based on Harrell's C-index values of 0.826 (95% confidence interval (CI) = 0.779-0.873) for the development cohort and 0.877 (95% CI = 0.824-0.93) for the validation cohort. Moreover, comparing the predicted and observed major adverse cardiac and cerebrovascular events in both development and validation cohorts indicated that the prediction nomogram was well-calibrated. Decision curve analysis demonstrated the good clinical applicability of the prediction nomogram.
Our findings demonstrated the construction of an innovative visualisation tool that utilises various types of data to predict poor outcomes in Chinese patients diagnosed with OSAS, providing accurate and personalised therapy.
Chinese Clinical Trial Registry ChiCTR2300075727.
阻塞性睡眠呼吸暂停综合征(OSAS)是一种常见病症,常伴有复杂的代谢问题,且常与不良心血管结局相关。我们开发了一种整合多模态数据的纵向预测模型,用于对初诊 OSAS 患者进行心血管风险分层。
我们回顾了 2018-19 年间接受诊断性多导睡眠图检查的新发 OSAS 患者的数据。根据临床实践指南,患者采用标准治疗方案进行治疗。
在中位随访 32 个月期间,729 例患者中有 98 例(13.4%)发生了我们的复合结局。病例以 7:3 的比例随机分为开发(n=510)和验证(n=219)队列。使用六个临床因素——性别、年龄、糖尿病、冠心病史、甘油三酯-葡萄糖指数和呼吸暂停低通气指数,创建了预测列线图。预测列线图显示出优异的判别能力,开发队列的 Harrell's C 指数值为 0.826(95%置信区间 [CI]:0.779-0.873),验证队列为 0.877(95% CI:0.824-0.93)。此外,在开发和验证队列中比较预测和观察到的主要不良心脑血管事件表明,预测列线图具有良好的校准度。决策曲线分析表明,该预测列线图具有良好的临床适用性。
我们的研究结果表明,构建了一种创新的可视化工具,该工具利用多种类型的数据预测中国 OSAS 患者的不良结局,提供了准确和个性化的治疗。
中国临床试验注册中心 ChiCTR2300075727。