Suppr超能文献

用于预测急诊经皮冠状动脉介入治疗后新发ST段抬高型心肌梗死的多模态数据驱动预后模型。

Multimodal data-driven prognostic model for predicting new-onset ST-elevation myocardial infarction following emergency percutaneous coronary intervention.

作者信息

Tang Long, Wu Min, Xu Yanan, Zhu Tongjian, Fang Cunming, Ma Kezhong, Wang Jun

机构信息

Department of Cardiology, People's Hospital of Xuancheng City, The Affiliated Xuancheng Hospital of Wannan Medical College, Anhui, 242000, China.

Department of Oncology, Third People's Hospital of Honghe Prefecture, Gejiu, Yunnan, China.

出版信息

Inflamm Res. 2023 Sep;72(9):1799-1809. doi: 10.1007/s00011-023-01781-5. Epub 2023 Aug 29.

Abstract

OBJECTIVES

We developed a nomogram model derived from inflammatory indices, clinical data, and imaging data to predict in-hospital major adverse cardiac and cerebrovascular events (MACCEs) following emergency percutaneous coronary intervention (PCI) in patients with new-onset ST-elevation myocardial infarction (STEMI).

METHODS

Patients with new-onset STEMI admitted between June 2020 and November 2022 were retrospectively reviewed. Data pertaining to coronary angiograms, clinical data, biochemical indices, and in-hospital clinical outcomes were derived from electronic medical records. Lasso regression model was employed to screen risk factors and construct a prediction model.

RESULTS

Overall, 547 patients with new-onset STEMI who underwent PCI were included and assigned to the training cohort (n = 384) and independent verification cohort (n = 163). Six clinical features (age, diabetes mellitus, current smoking, hyperuricemia, neutrophil-to-lymphocyte ratio, and Gensini score) were selected by LASSO regression to construct a nomogram to predict the risk of in-hospital MACCEs. The area-under-the-curve (AUC) values for in-hospital MACCEs risk in the training and independent verification cohorts were 0.921 (95% CI 0.881-0.961) and 0.898 (95% CI 0.821-0.976), respectively. It was adequately calibrated in both training cohort and independent verification cohorts, and predictions were correlated with actual outcomes. Decision curve analysis demonstrated that the nomogram was capable of predicting in-hospital MACCEs with good clinical benefit.

CONCLUSIONS

Our prediction nomogram based on multi-modal data (inflammatory indices, clinical and imaging data) reliably predicted in-hospital MACCEs in new-onset STEMI patients with emergency PCI. This prediction nomogram can enable individualized treatment strategies.

摘要

目的

我们开发了一种基于炎症指标、临床数据和影像数据的列线图模型,以预测新发ST段抬高型心肌梗死(STEMI)患者急诊经皮冠状动脉介入治疗(PCI)后院内主要不良心脑血管事件(MACCE)。

方法

回顾性分析2020年6月至2022年11月期间收治的新发STEMI患者。冠状动脉造影、临床数据、生化指标及院内临床结局数据均来自电子病历。采用Lasso回归模型筛选危险因素并构建预测模型。

结果

共纳入547例行PCI的新发STEMI患者,并分为训练队列(n = 384)和独立验证队列(n = 163)。通过Lasso回归选择了六个临床特征(年龄、糖尿病、当前吸烟、高尿酸血症、中性粒细胞与淋巴细胞比值和Gensini评分)来构建列线图,以预测院内MACCE风险。训练队列和独立验证队列中院内MACCE风险的曲线下面积(AUC)值分别为0.921(95%CI 0.881 - 0.961)和0.898(95%CI 0.821 - 0.976)。在训练队列和独立验证队列中均得到了充分校准,预测结果与实际结果相关。决策曲线分析表明,该列线图能够预测院内MACCE,具有良好的临床效益。

结论

我们基于多模态数据(炎症指标、临床和影像数据)的预测列线图能够可靠地预测新发STEMI急诊PCI患者的院内MACCE。这种预测列线图可实现个体化治疗策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验