Zhou Yang, Zhang Deyun, Chen Yu, Geng Shijia, Wei Guodong, Tian Ying, Shi Liang, Wang Yanjiang, Hong Shenda, Liu Xingpeng
Heart Center, Beijing Chaoyang Hospital, Capital Medical University, 100020 Beijing, China.
HeartVoice Medical Technology, 230027 Hefei, Anhui, China.
Rev Cardiovasc Med. 2024 Jul 2;25(7):242. doi: 10.31083/j.rcm2507242. eCollection 2024 Jul.
Recent advancements in artificial intelligence (AI) have significantly improved atrial fibrillation (AF) detection using electrocardiography (ECG) data obtained during sinus rhythm (SR). However, the utility of printed ECG (pECG) records for AF detection, particularly in developing countries, remains unexplored. This study aims to assess the efficacy of an AI-based screening tool for paroxysmal AF (PAF) using pECGs during SR.
We analyzed 5688 printed 12-lead SR-ECG records from 2192 patients admitted to Beijing Chaoyang Hospital between May 2011 to August 2022. All patients underwent catheter ablation for PAF (AF group) or other electrophysiological procedures (non-AF group). We developed a deep learning model to detect PAF from these printed SR-ECGs. The 2192 patients were randomly assigned to training (1972, 57.3% with PAF), validation (108, 57.4% with PAF), and test datasets (112, 57.1% with PAF). We developed an applet to digitize the printed ECG data and display the results within a few seconds. Our evaluation focused on sensitivity, specificity, accuracy, F1 score, the area under the receiver-operating characteristic curve (AUROC), and precision-recall curves (PRAUC).
The PAF detection algorithm demonstrated strong performance: sensitivity 87.5%, specificity 66.7%, accuracy 78.6%, F1 score 0.824, AUROC 0.871 and PRAUC 0.914. A gradient-weighted class activation map (Grad-CAM) revealed the model's tailored focus on different ECG areas for personalized PAF detection.
The deep-learning analysis of printed SR-ECG records shows high accuracy in PAF detection, suggesting its potential as a reliable screening tool in real-world clinical practice.
人工智能(AI)的最新进展显著改善了利用窦性心律(SR)期间获得的心电图(ECG)数据检测心房颤动(AF)的能力。然而,打印心电图(pECG)记录在AF检测中的效用,尤其是在发展中国家,仍未得到探索。本研究旨在评估一种基于AI的筛查工具利用SR期间的pECG检测阵发性AF(PAF)的疗效。
我们分析了2011年5月至2022年8月期间在北京朝阳医院住院的2192例患者的5688份打印的12导联SR-ECG记录。所有患者均接受了PAF导管消融术(AF组)或其他电生理手术(非AF组)。我们开发了一种深度学习模型,用于从这些打印的SR-ECG中检测PAF。将2192例患者随机分配到训练集(1972例,57.3%为PAF)、验证集(108例,57.4%为PAF)和测试数据集(112例,57.1%为PAF)。我们开发了一个小程序来数字化打印的ECG数据,并在几秒钟内显示结果。我们的评估重点是敏感性、特异性、准确性、F1分数、受试者操作特征曲线下面积(AUROC)和精确召回率曲线(PRAUC)。
PAF检测算法表现出强大的性能:敏感性87.5%,特异性66.7%,准确性78.6%,F1分数0.824,AUROC 0.871,PRAUC 0.914。梯度加权类激活映射(Grad-CAM)显示该模型针对个性化PAF检测对不同ECG区域进行了针对性关注。
对打印的SR-ECG记录进行深度学习分析在PAF检测中显示出高准确性,表明其在实际临床实践中作为可靠筛查工具的潜力。