Suppr超能文献

动态三维共培养模型:应用于周围神经系统的组织工程的未来。

Dynamic three-dimensional coculture model: The future of tissue engineering applied to the peripheral nervous system.

作者信息

Choinière William, Petit Ève, Monfette Vincent, Pelletier Samuel, Godbout-Lavoie Catherine, Lauzon Marc-Antoine

机构信息

Department of Chemical Engineering and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada.

Department of Electrical and Informatics Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada.

出版信息

J Tissue Eng. 2024 Aug 13;15:20417314241265916. doi: 10.1177/20417314241265916. eCollection 2024 Jan-Dec.

Abstract

Traumatic injuries to the peripheral nervous system (PNI) can lead to severe consequences such as paralysis. Unfortunately, current treatments rarely allow for satisfactory functional recovery. The high healthcare costs associated with PNS injuries, worker disability, and low patient satisfaction press for alternative solutions that surpass current standards. For the treatment of injuries with a deficit of less than 30 mm to bridge, the use of synthetic nerve conduits (NGC) is favored. However, to develop such promising therapeutic strategies, models that more faithfully mimic nerve physiology are needed. The absence of a clinically scaled model with essential elements such as a three-dimension environment and dynamic coculture has hindered progress in this field. The presented research focuses on the development of an coculture model of the peripheral nervous system (PNS) involving the use of functional biomaterial which microstructure replicates nerve topography. Initially, the behavior of neuron-derived cell lines (N) and Schwann cells (SC) in contact with a short section of biomaterial (5 mm) was studied. Subsequent investigations, using fluorescent markers and survival assays, demonstrated the synergistic effects of coculture. These optimized parameters were then applied to longer biomaterials (30 mm), equivalent to clinically used NGC. The results obtained demonstrated the possibility of maintaining an extended coculture of SC and N over a 7-day period on a clinically scaled biomaterial, observing some functionality. In the long term, the knowledge gained from this work will contribute to a better understanding of the PNS regeneration process and promote the development of future therapeutic approaches while reducing reliance on animal experimentation. This model can be used for drug screening and adapted for personalized medicine trials. Ultimately, this work fills a critical gap in current research, providing a transformative approach to study and advance treatments for PNS injuries.

摘要

外周神经系统创伤性损伤(PNI)可导致诸如瘫痪等严重后果。不幸的是,目前的治疗方法很少能实现令人满意的功能恢复。与外周神经系统损伤相关的高昂医疗成本、工人残疾以及患者满意度低,迫切需要超越当前标准的替代解决方案。对于缺损小于30毫米的损伤修复,合成神经导管(NGC)的使用更受青睐。然而,要开发这种有前景的治疗策略,需要更忠实地模拟神经生理学的模型。缺乏具有三维环境和动态共培养等基本要素的临床规模模型阻碍了该领域的进展。本研究聚焦于开发一种外周神经系统(PNS)共培养模型,该模型使用微观结构复制神经形态的功能性生物材料。最初,研究了神经元衍生细胞系(N)和雪旺细胞(SC)与一小段生物材料(5毫米)接触时的行为。随后使用荧光标记和存活分析进行的研究证明了共培养的协同作用。然后将这些优化参数应用于更长的生物材料(30毫米),其等同于临床使用的NGC。所获得的结果表明,在临床规模的生物材料上,SC和N的延长共培养维持7天并观察到一些功能是可能的。从长远来看,这项工作所获得的知识将有助于更好地理解PNS再生过程,并促进未来治疗方法的发展,同时减少对动物实验的依赖。该模型可用于药物筛选,并适用于个性化医学试验。最终,这项工作填补了当前研究中的一个关键空白,为研究和推进PNS损伤治疗提供了一种变革性方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/844b/11320398/21b21ed001e2/10.1177_20417314241265916-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验