Young Michael, Yang Zixin, Simon Richard, Linte Cristian A
Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, NY 14623, USA.
Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
Data Eng Med Imaging (2023). 2023 Oct;14314:91-101. doi: 10.1007/978-3-031-44992-5_9. Epub 2023 Oct 1.
Due to limited direct organ visualization, minimally invasive interventions rely extensively on medical imaging and image guidance to ensure accurate surgical instrument navigation and target tissue manipulation. In the context of laparoscopic liver interventions, intra-operative video imaging only provides a limited field-of-view of the liver surface, with no information of any internal liver lesions identified during diagnosis using pre-procedural imaging. Hence, to enhance intra-procedural visualization and navigation, the registration of pre-procedural, diagnostic images and anatomical models featuring target tissues to be accessed or manipulated during surgery entails a sufficient accurate registration of the pre-procedural data into the intra-operative setting. Prior work has demonstrated the feasibility of neural network-based solutions for nonrigid volume-to-surface liver registration. However, view occlusion, lack of meaningful feature landmarks, and liver deformation between the pre- and intra-operative settings all contribute to the difficulty of this registration task. In this work, we leverage some of the state-of-the-art deep learning frameworks to implement and test various network architecture modifications toward improving the accuracy and robustness of volume-to-surface liver registration. Specifically, we focus on the adaptation of a transformer-based segmentation network for the task of better predicting the optimal displacement field for nonrigid registration. Our results suggest that one particular transformer-based network architecture-UTNet-led to significant improvements over baseline performance, yielding a mean displacement error on the order of 4 mm across a variety of datasets.
由于直接器官可视化有限,微创干预广泛依赖医学成像和图像引导,以确保手术器械的准确导航和目标组织的操作。在腹腔镜肝脏干预的背景下,术中视频成像仅提供肝脏表面的有限视野,对于术前成像诊断中发现的任何肝脏内部病变没有信息。因此,为了增强术中可视化和导航,将术前诊断图像和具有手术中要访问或操作的目标组织的解剖模型进行配准,需要将术前数据足够准确地配准到术中环境中。先前的工作已经证明了基于神经网络的解决方案用于非刚性体积到表面肝脏配准的可行性。然而,视野遮挡、缺乏有意义的特征标志以及术前和术中环境之间的肝脏变形都导致了这项配准任务的困难。在这项工作中,我们利用一些最先进的深度学习框架来实现和测试各种网络架构修改,以提高体积到表面肝脏配准的准确性和鲁棒性。具体来说,我们专注于改编基于变压器的分割网络,以更好地预测非刚性配准的最佳位移场。我们的结果表明,一种特定的基于变压器的网络架构——UTNet——相对于基线性能有显著改进,在各种数据集上产生的平均位移误差约为4毫米。