Suppr超能文献

实践中的机器学习ADME模型:来自一个成功的先导化合物优化案例研究的四条准则。

Machine Learning ADME Models in Practice: Four Guidelines from a Successful Lead Optimization Case Study.

作者信息

Rich Alexander S, Chan Yvonne H, Birnbaum Benjamin, Haider Kamran, Haimson Joshua, Hale Michael, Han Yongxin, Hickman William, Hoeflich Klaus P, Ortwine Daniel, Özen Ayşegül, Belanger David B

机构信息

Inductive Bio, Inc., 550 Vanderbilt Ave, #730, Brooklyn, New York 11238, United States.

Nested Therapeutics, 1030 Mass Ave, Suite 410, Cambridge, Massachusetts 02138, United States.

出版信息

ACS Med Chem Lett. 2024 Jul 25;15(8):1169-1173. doi: 10.1021/acsmedchemlett.4c00290. eCollection 2024 Aug 8.

Abstract

Optimization of the ADME properties and pharmacokinetic (PK) profile of compounds is one of the critical activities in any medicinal chemistry campaign to discover a future clinical candidate. Finding ways to expedite the process to address ADME/PK shortcomings and reduce the number of compounds to synthesize is highly valuable. This article provides practical guidelines and a case study on the use of ML ADME models to guide compound design in small molecule lead optimization. These guidelines highlight that ML models cannot have an impact in a vacuum: they help advance a program when they have the trust of users, are tuned to the needs of the program, and are integrated into decision-making processes in a way that complements and augments the expertise of chemists.

摘要

优化化合物的吸收、分布、代谢和排泄(ADME)特性以及药代动力学(PK)概况是任何药物化学研究中发现未来临床候选药物的关键活动之一。找到加快解决ADME/PK缺陷的过程并减少待合成化合物数量的方法非常有价值。本文提供了关于使用机器学习ADME模型指导小分子先导化合物优化中化合物设计的实用指南和案例研究。这些指南强调,机器学习模型不能在真空中产生影响:当它们获得用户信任、根据项目需求进行调整并以补充和增强化学家专业知识的方式融入决策过程时,它们有助于推动项目进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验