Borba Joyce V B, Salazar-Alvarez Luis Carlos, Ferreira Letícia Tiburcio, Silva-Mendonça Sabrina, Silva Meryck Felipe Brito da, Sanches Igor H, Clementino Leandro da Costa, Magalhães Marcela Lucas, Rimoldi Aline, Calit Juliana, Santana Sofia, Prudêncio Miguel, Cravo Pedro V, Bargieri Daniel Y, Cassiano Gustavo C, Costa Fabio T M, Andrade Carolina Horta
Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics Evolution, Microbiology and Immunology. Institute of Biology, UNICAMP, 13083-970 Campinas, São Paulo Brazil.
Laboratory for Molecular Modeling and Drug Design (LabMol), Faculty of Pharmacy, Federal University of Goias, Rua 240, qd. 87, Goiânia, Goiás 74605-170, Brazil.
ACS Med Chem Lett. 2024 Jul 18;15(8):1386-1395. doi: 10.1021/acsmedchemlett.4c00323. eCollection 2024 Aug 8.
Malaria presents a significant challenge to global public health, with around 247 million cases estimated to occur annually worldwide. The growing resistance of parasites to existing therapies underscores the urgent need for new and innovative antimalarial drugs. This study leveraged artificial intelligence (AI) to tackle this complex challenge. We developed multistage Machine Learning Quantitative Structure-Activity Relationship (ML-QSAR) models to effectively analyze large datasets and predict the efficacy of chemical compounds against multiple life cycle stages of parasites. We then selected 16 compounds for experimental evaluation, six of which showed at least dual-stage inhibitory activity and one inhibited all life cycle stages tested. Moreover, explainable AI (XAI) analysis provided insights into critical molecular features influencing model predictions, thereby enhancing our understanding of compound interactions. This study not only empowers the development of advanced predictive AI models but also accelerates the identification and optimization of potential antiplasmodial compounds.
疟疾对全球公共卫生构成重大挑战,据估计全球每年约有2.47亿例疟疾病例。寄生虫对现有疗法的耐药性不断增强,凸显了对新型抗疟药物的迫切需求。本研究利用人工智能(AI)来应对这一复杂挑战。我们开发了多阶段机器学习定量构效关系(ML-QSAR)模型,以有效分析大型数据集,并预测化合物对寄生虫多个生命周期阶段的疗效。然后,我们选择了16种化合物进行实验评估,其中6种显示出至少双阶段抑制活性,1种抑制了所有测试的生命周期阶段。此外,可解释人工智能(XAI)分析提供了对影响模型预测的关键分子特征的见解,从而加深了我们对化合物相互作用的理解。这项研究不仅推动了先进预测性AI模型的开发,还加速了潜在抗疟化合物的识别和优化。