Suppr超能文献

深度学习驱动的药物发现研究:攻克疟疾。

Deep Learning-driven research for drug discovery: Tackling Malaria.

机构信息

Laboratory of Cheminformatics, University Center of Anápolis - UniEVANGÉLICA, Anápolis, Goiás, Brazil.

LabMol - Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil.

出版信息

PLoS Comput Biol. 2020 Feb 18;16(2):e1007025. doi: 10.1371/journal.pcbi.1007025. eCollection 2020 Feb.

Abstract

Malaria is an infectious disease that affects over 216 million people worldwide, killing over 445,000 patients annually. Due to the constant emergence of parasitic resistance to the current antimalarial drugs, the discovery of new drug candidates is a major global health priority. Aiming to make the drug discovery processes faster and less expensive, we developed binary and continuous Quantitative Structure-Activity Relationships (QSAR) models implementing deep learning for predicting antiplasmodial activity and cytotoxicity of untested compounds. Then, we applied the best models for a virtual screening of a large database of chemical compounds. The top computational predictions were evaluated experimentally against asexual blood stages of both sensitive and multi-drug-resistant Plasmodium falciparum strains. Among them, two compounds, LabMol-149 and LabMol-152, showed potent antiplasmodial activity at low nanomolar concentrations (EC50 <500 nM) and low cytotoxicity in mammalian cells. Therefore, the computational approach employing deep learning developed here allowed us to discover two new families of potential next generation antimalarial agents, which are in compliance with the guidelines and criteria for antimalarial target candidates.

摘要

疟疾是一种传染病,影响全球超过 2.16 亿人,每年导致超过 44.5 万人死亡。由于寄生虫对现有抗疟药物的耐药性不断出现,发现新的药物候选物是全球卫生的一个主要优先事项。为了使药物发现过程更快、更便宜,我们开发了二进制和连续的定量构效关系 (QSAR) 模型,实施了深度学习,以预测未经测试的化合物的抗疟活性和细胞毒性。然后,我们将最佳模型应用于大规模化合物数据库的虚拟筛选。对敏感和多药耐药性恶性疟原虫株的无性血阶段进行了针对计算预测的最高水平的实验评估。其中,两种化合物 LabMol-149 和 LabMol-152 在低纳摩尔浓度(EC50 <500 nM)下表现出很强的抗疟活性,对哺乳动物细胞的细胞毒性低。因此,这里采用深度学习开发的计算方法使我们能够发现两种新的潜在下一代抗疟药物家族,它们符合抗疟靶候选物的指南和标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c036/7048302/434ebe82c3d4/pcbi.1007025.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验