Jin Rong, Li Yu, Xu Yanyan, Cheng Lei, Jiang Dechen
State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
College of Engineering and Technology, Southwest University, Chongqing, China.
Research (Wash D C). 2024 Aug 13;7:0443. doi: 10.34133/research.0443. eCollection 2024.
Stereoscopic imaging of single molecules at the plasma membrane of single cell requires spatial resolutions in 3 dimensions (--) at 10-nm level, which is rarely achieved using most optical super-resolution microscopies. Here, electrochemical stereoscopic microscopy with a detection limit down to a single molecule is achieved using a photoreduction-assisted cycle inside a 20-nm gel electrolyte nanoball at the tip of a nanopipette. On the basis of the electrochemical oxidation of Ru(bpy) into Ru(bpy) followed by the reduction of Ru(bpy) into Ru(bpy) by photogenerated isopropanol radicals, a charge of 1.5 fC is obtained from the cycling electron transfers involving one Ru(bpy) molecule. By using the nanopipette to scan the cellular membrane modified with Ru(bpy) -tagged antibody, the morphology of the cell membrane and the distribution of carcinoembryonic antigen (CEA) on the membrane are electrochemically visualized with a spatial resolution of 14 nm. The resultant stereoscopic image reveals more CEA on membrane protrusions, providing direct evidence to support easy access of membrane CEA to intravenous antibodies. The breakthrough in single-molecule electrochemistry at the cellular level leads to the establishment of high-resolution 3-dimensional single-cell electrochemical microscopy, offering an alternative strategy to remedy the imperfection of stereoscopic visualization in optical microscopes.
对单细胞质膜上的单分子进行立体成像需要三维空间分辨率达到10纳米级别,而大多数光学超分辨率显微镜很难达到这一要求。在此,通过在纳米移液器尖端的20纳米凝胶电解质纳米球内利用光还原辅助循环,实现了检测限低至单分子的电化学立体显微镜。基于Ru(bpy)被电化学氧化为Ru(bpy),随后光生异丙醇自由基将Ru(bpy)还原为Ru(bpy),涉及一个Ru(bpy)分子的循环电子转移可获得1.5飞库仑的电荷。通过使用纳米移液器扫描用Ru(bpy)标记抗体修饰的细胞膜,以14纳米的空间分辨率对细胞膜形态和膜上癌胚抗原(CEA)的分布进行电化学可视化。所得的立体图像显示膜突起上有更多的CEA,为支持膜CEA易于与静脉内抗体结合提供了直接证据。细胞水平上单分子电化学的突破导致了高分辨率三维单细胞电化学显微镜的建立,为弥补光学显微镜立体可视化的不足提供了一种替代策略。