Suppr超能文献

基于序列的新型抗原流感 A 病毒的检测。

Sequence-based detection of emerging antigenically novel influenza A viruses.

机构信息

Odum School of Ecology, University of Georgia , Athens, GA 30602, USA.

Center for the Ecology of Infectious Diseases, University of Georgia , Athens, GA 30602, USA.

出版信息

Proc Biol Sci. 2024 Aug;291(2028):20240790. doi: 10.1098/rspb.2024.0790. Epub 2024 Aug 14.

Abstract

The detection of evolutionary transitions in influenza A (H3N2) viruses' antigenicity is a major obstacle to effective vaccine design and development. In this study, we describe Novel Influenza Virus A Detector (NIAViD), an unsupervised machine learning tool, adept at identifying these transitions, using the HA1 sequence and associated physico-chemical properties. NIAViD performed with 88.9% (95% CI, 56.5-98.0%) and 72.7% (95% CI, 43.4-90.3%) sensitivity in training and validation, respectively, outperforming the uncalibrated null model-33.3% (95% CI, 12.1-64.6%) and does not require potentially biased, time-consuming and costly laboratory assays. The pivotal role of the Boman's index, indicative of the virus's cell surface binding potential, is underscored, enhancing the precision of detecting antigenic transitions. NIAViD's efficacy is not only in identifying influenza isolates that belong to novel antigenic clusters, but also in pinpointing potential sites driving significant antigenic changes, without the reliance on explicit modelling of haemagglutinin inhibition titres. We believe this approach holds promise to augment existing surveillance networks, offering timely insights for the development of updated, effective influenza vaccines. Consequently, NIAViD, in conjunction with other resources, could be used to support surveillance efforts and inform the development of updated influenza vaccines.

摘要

流感病毒 A(H3N2)抗原性进化转变的检测是有效疫苗设计和开发的主要障碍。在这项研究中,我们描述了 Novel Influenza Virus A Detector(NIAViD),这是一种无监督机器学习工具,擅长使用 HA1 序列和相关物理化学特性来识别这些转变。NIAViD 在训练和验证中的灵敏度分别为 88.9%(95%CI,56.5-98.0%)和 72.7%(95%CI,43.4-90.3%),优于未经校准的零模型-33.3%(95%CI,12.1-64.6%),并且不需要潜在有偏差、耗时和昂贵的实验室检测。突出强调了 Boman 指数的关键作用,该指数表明了病毒在细胞表面的结合潜力,提高了检测抗原转变的准确性。NIAViD 的功效不仅在于识别属于新型抗原簇的流感分离株,还在于确定潜在驱动显著抗原变化的位点,而无需明确建模血凝抑制滴度。我们相信这种方法有希望增强现有的监测网络,为开发更新、有效的流感疫苗提供及时的见解。因此,NIAViD 可以与其他资源结合使用,以支持监测工作并为更新流感疫苗的开发提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/664c/11323087/8ff89447baee/rspb.2024.0790.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验