Suppr超能文献

组学衍生的生物学模块反映了阿尔茨海默病中的代谢性大脑变化。

Omics-derived biological modules reflect metabolic brain changes in Alzheimer's disease.

机构信息

Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.

Graduate Program in Computing, Universidade Federal de Pelotas (UFPEL), Porto Alegre, Brazil.

出版信息

Alzheimers Dement. 2024 Oct;20(10):6709-6721. doi: 10.1002/alz.14095. Epub 2024 Aug 14.

Abstract

INTRODUCTION

Brain glucose hypometabolism, indexed by the fluorodeoxyglucose positron emission tomography ([F]FDG-PET) imaging, is a metabolic signature of Alzheimer's disease (AD). However, the underlying biological pathways involved in these metabolic changes remain elusive.

METHODS

Here, we integrated [F]FDG-PET images with blood and hippocampal transcriptomic data from cognitively unimpaired (CU, n = 445) and cognitively impaired (CI, n = 749) individuals using modular dimension reduction techniques and voxel-wise linear regression analysis.

RESULTS

Our results showed that multiple transcriptomic modules are associated with brain [F]FDG-PET metabolism, with the top hits being a protein serine/threonine kinase activity gene cluster (peak-t = 4.86, P value < 0.001) and zinc-finger-related regulatory units (peak-t = 3.90, P value < 0.001).

DISCUSSION

By integrating transcriptomics with PET imaging data, we identified that serine/threonine kinase activity-associated genes and zinc-finger-related regulatory units are highly associated with brain metabolic changes in AD.

HIGHLIGHTS

We conducted an integrated analysis of system-based transcriptomics and fluorodeoxyglucose positron emission tomography ([F]FDG-PET) at the voxel level in Alzheimer's disease (AD). The biological process of serine/threonine kinase activity was the most associated with [F]FDG-PET in the AD brain. Serine/threonine kinase activity alterations are associated with brain vulnerable regions in AD [F]FDG-PET. Zinc-finger transcription factor targets were associated with AD brain [F]FDG-PET metabolism.

摘要

简介

脑葡萄糖代谢率降低,通过氟代脱氧葡萄糖正电子发射断层扫描([F]FDG-PET)成像来表示,是阿尔茨海默病(AD)的代谢特征。然而,这些代谢变化背后涉及的潜在生物学途径仍难以捉摸。

方法

在这里,我们使用模块化降维技术和体素线性回归分析,将[F]FDG-PET 图像与认知正常(CU,n=445)和认知受损(CI,n=749)个体的血液和海马转录组数据进行了整合。

结果

我们的结果表明,多个转录组模块与大脑[F]FDG-PET 代谢有关,其中最显著的是一个蛋白丝氨酸/苏氨酸激酶活性基因簇(峰值-t=4.86,P 值<0.001)和锌指相关调节单元(峰值-t=3.90,P 值<0.001)。

讨论

通过将转录组学与 PET 成像数据相结合,我们发现丝氨酸/苏氨酸激酶活性相关基因和锌指相关调节单元与 AD 大脑中的代谢变化高度相关。

重点

我们在阿尔茨海默病(AD)中进行了基于系统的转录组学和氟代脱氧葡萄糖正电子发射断层扫描([F]FDG-PET)的体素水平的综合分析。丝氨酸/苏氨酸激酶活性的生物学过程与 AD 大脑中的[F]FDG-PET 最相关。丝氨酸/苏氨酸激酶活性的改变与 AD 大脑中[F]FDG-PET 易损区域有关。锌指转录因子靶标与 AD 大脑[F]FDG-PET 代谢有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd5b/11485394/dad89a4cf74f/ALZ-20-6709-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验