Chayka Artem, Danda Matěj, Dostálková Alžběta, Spiwok Vojtěch, Klimešová Anna, Kapisheva Marina, Zgarbová Michala, Weber Jan, Ruml Tomáš, Rumlová Michaela, Janeba Zlatko
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic.
Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 16628, Prague 6, Czech Republic.
ChemMedChem. 2024 Dec 2;19(23):e202400367. doi: 10.1002/cmdc.202400367. Epub 2024 Oct 3.
The use of Fpocket and virtual screening techniques enabled us to identify potential allosteric druggable pockets within the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). Of the compounds screened, compound 1 was identified as a promising inhibitor, lowering a SARS-CoV-2 RdRp activity to 57 % in an enzymatic assay at 10 μM concentration. The structure of compound 1 was subsequently optimized in order to preserve or enhance inhibitory activity. This involved the substitution of problematic ester and aromatic nitro groups with more inert functionalities. The N,N'-diphenylurea scaffold with two NH groups was identified as essential for the compound's activity but also exhibited high toxicity in Calu-3 cells. To address this issue, a scaffold hopping approach was employed to replace the urea core with potentially less toxic urea isosteres. This approach yielded several structural analogues with notable activity, specifically 2,2'-bisimidazol (in compound 55 with residual activity RA=42 %) and (1H-imidazol-2-yl)urea (in compounds 59 and 60, with RA=50 and 28 %, respectively). Despite these advances, toxicity remained a major concern. These compounds represent a promising starting point for further structure-activity relationship studies of allosteric inhibitors of SARS-CoV-2 RdRp, with the goal of reducing their cytotoxicity and improving aqueous solubility.
使用Fpocket和虚拟筛选技术使我们能够在严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的RNA依赖性RNA聚合酶(RdRp)中识别出潜在的变构可成药口袋。在筛选的化合物中,化合物1被鉴定为一种有前景的抑制剂,在10 μM浓度的酶促试验中将SARS-CoV-2 RdRp活性降低至57%。随后对化合物1的结构进行了优化,以保持或增强抑制活性。这涉及用更惰性的官能团取代有问题的酯基和芳香硝基。具有两个NH基团的N,N'-二苯基脲支架被确定为该化合物活性所必需,但在Calu-3细胞中也表现出高毒性。为了解决这个问题,采用了骨架跳跃方法,用潜在毒性较小的脲生物电子等排体取代脲核心。这种方法产生了几种具有显著活性的结构类似物,特别是2,2'-双咪唑(化合物55中的残留活性RA = 42%)和(1H-咪唑-2-基)脲(化合物59和60中的RA分别为50%和28%)。尽管有这些进展,但毒性仍然是一个主要问题。这些化合物是进一步研究SARS-CoV-2 RdRp变构抑制剂构效关系的有前景的起点,目标是降低其细胞毒性并提高水溶性。