Suppr超能文献

二维 TiC MXene 用于高分辨率神经接口。

Two-Dimensional TiC MXene for High-Resolution Neural Interfaces.

机构信息

Center for Neurotrauma, Neurodegeneration, and Restoration , Corporal Michael J. Crescenz Veterans Affairs Medical Center , Philadelphia , Pennsylvania 19104 , United States.

School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14853 , United States.

出版信息

ACS Nano. 2018 Oct 23;12(10):10419-10429. doi: 10.1021/acsnano.8b06014. Epub 2018 Sep 12.

Abstract

High-resolution neural interfaces are essential tools for studying and modulating neural circuits underlying brain function and disease. Because electrodes are miniaturized to achieve higher spatial resolution and channel count, maintaining low impedance and high signal quality becomes a significant challenge. Nanostructured materials can address this challenge because they combine high electrical conductivity with mechanical flexibility and can interact with biological systems on a molecular scale. Unfortunately, fabricating high-resolution neural interfaces from nanostructured materials is typically expensive and time-consuming and does not scale, which precludes translation beyond the benchtop. Two-dimensional (2D) TiC MXene possesses a combination of remarkably high volumetric capacitance, electrical conductivity, surface functionality, and processability in aqueous dispersions distinct among carbon-based nanomaterials. Here, we present a high-throughput microfabrication process for constructing TiC neuroelectronic devices and demonstrate their superior impedance and in vivo neural recording performance in comparison with standard metal microelectrodes. Specifically, when compared to gold microelectrodes of the same size, TiC electrodes exhibit a 4-fold reduction in interface impedance. Furthermore, intraoperative in vivo recordings from the brains of anesthetized rats at multiple spatial and temporal scales demonstrate that TiC electrodes exhibit lower baseline noise, higher signal-to-noise ratio, and reduced susceptibility to 60 Hz interference than gold electrodes. Finally, in neuronal biocompatibility studies, neurons cultured on TiC are as viable as those in control cultures, and they can adhere, grow axonal processes, and form functional networks. Overall, our results indicate that TiC MXene microelectrodes have the potential to become a powerful platform technology for high-resolution biological interfaces.

摘要

高分辨率神经接口是研究和调节大脑功能和疾病相关神经回路的重要工具。由于电极被小型化以实现更高的空间分辨率和通道数,因此保持低阻抗和高信号质量成为一个重大挑战。纳米结构材料可以解决这一挑战,因为它们结合了高导电性、机械柔韧性,并可以在分子尺度上与生物系统相互作用。不幸的是,用纳米结构材料制造高分辨率神经接口通常既昂贵又耗时,而且不具有扩展性,这使得它们无法超越实验室台架。二维(2D)TiC MXene 具有在水溶液中分散体中非常高的体积电容、电导率、表面功能和可加工性的组合,这在碳基纳米材料中是独特的。在这里,我们提出了一种用于构建 TiC 神经电子器件的高通量微制造工艺,并展示了与标准金属微电极相比,其优越的阻抗和体内神经记录性能。具体来说,与相同尺寸的金微电极相比,TiC 电极的界面阻抗降低了 4 倍。此外,在麻醉大鼠大脑的多个时空尺度上进行的术中体内记录表明,TiC 电极的基线噪声更低、信噪比更高,并且对 60 Hz 干扰的敏感性降低,优于金电极。最后,在神经元生物相容性研究中,在 TiC 上培养的神经元与对照培养物中的神经元一样具有活力,并且它们可以附着、生长轴突过程并形成功能性网络。总体而言,我们的结果表明,TiC MXene 微电极有可能成为高分辨率生物接口的强大平台技术。

相似文献

1
Two-Dimensional TiC MXene for High-Resolution Neural Interfaces.
ACS Nano. 2018 Oct 23;12(10):10419-10429. doi: 10.1021/acsnano.8b06014. Epub 2018 Sep 12.
3
Gold nanograin microelectrodes for neuroelectronic interfaces.
Biotechnol J. 2013 Feb;8(2):206-14. doi: 10.1002/biot.201200219. Epub 2012 Nov 9.
4
Ultrasoft microwire neural electrodes improve chronic tissue integration.
Acta Biomater. 2017 Apr 15;53:46-58. doi: 10.1016/j.actbio.2017.02.010. Epub 2017 Feb 6.
5
Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation.
J Neurosci Methods. 2019 Oct 1;326:108369. doi: 10.1016/j.jneumeth.2019.108369. Epub 2019 Jul 18.
6
2D MXene interfaces preserve the basal electrophysiology of targeted neural circuits.
Nanoscale. 2022 Aug 4;14(30):10992-11002. doi: 10.1039/d2nr01542k.
7
Flexible silk-fibroin-based microelectrode arrays for high-resolution neural recording.
Mater Horiz. 2024 Sep 16;11(18):4338-4347. doi: 10.1039/d4mh00438h.
8
Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
Acta Biomater. 2020 Jan 1;101:565-574. doi: 10.1016/j.actbio.2019.10.040. Epub 2019 Oct 31.
9
Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes.
ACS Nano. 2015;9(4):4465-74. doi: 10.1021/acsnano.5b01060. Epub 2015 Mar 31.
10
Tissue-compliant neural implants from microfabricated carbon nanotube multilayer composite.
ACS Nano. 2013 Sep 24;7(9):7619-29. doi: 10.1021/nn402074y. Epub 2013 Aug 27.

引用本文的文献

1
Origin of two-dimensional MXene/ferromagnetic interface evaluated by angle-dependent hard X-ray photoemission spectroscopy.
Sci Technol Adv Mater. 2025 Aug 22;26(1):2551484. doi: 10.1080/14686996.2025.2551484. eCollection 2025.
2
Multifunctional bioelectronics for brain-body circuits.
Nat Rev Bioeng. 2025 Jun;3(6):465-484. doi: 10.1038/s44222-025-00289-3. Epub 2025 Mar 27.
3
Robust Skin-Conformal Nano-Electrodes for Sustainable Health and Performance Monitoring.
ACS Nano. 2025 Aug 26;19(33):30322-30337. doi: 10.1021/acsnano.5c08540. Epub 2025 Aug 12.
4
Antibacterial MXenes: An emerging non-antibiotic paradigm for surface engineering of orthopedic and dental implants.
Bioact Mater. 2025 May 12;51:150-176. doi: 10.1016/j.bioactmat.2025.05.002. eCollection 2025 Sep.
5
Unconventional Spin-Orbit Torques by 2D Multilayered MXenes for Future Nonvolatile Magnetic Memories.
Small. 2025 Jun;21(25):e2500626. doi: 10.1002/smll.202500626. Epub 2025 May 15.
6
MXenes as emerging materials to repair electroactive tissues and organs.
Bioact Mater. 2025 Mar 3;48:583-608. doi: 10.1016/j.bioactmat.2025.01.035. eCollection 2025 Jun.
7
Bio-inspired electronics: Soft, biohybrid, and "living" neural interfaces.
Nat Commun. 2025 Feb 21;16(1):1861. doi: 10.1038/s41467-025-57016-0.
8
Wearable Biodevices Based on Two-Dimensional Materials: From Flexible Sensors to Smart Integrated Systems.
Nanomicro Lett. 2025 Jan 15;17(1):109. doi: 10.1007/s40820-024-01597-w.
9
Transparent MXene Microelectrode Arrays for Multimodal Mapping of Neural Dynamics.
Adv Healthc Mater. 2025 Feb;14(4):e2402576. doi: 10.1002/adhm.202402576. Epub 2024 Sep 27.

本文引用的文献

1
2D Ultrathin MXene-Based Drug-Delivery Nanoplatform for Synergistic Photothermal Ablation and Chemotherapy of Cancer.
Adv Healthc Mater. 2018 May;7(9):e1701394. doi: 10.1002/adhm.201701394. Epub 2018 Feb 5.
2
Metallic TiCT MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio.
ACS Nano. 2018 Feb 27;12(2):986-993. doi: 10.1021/acsnano.7b07460. Epub 2018 Jan 25.
4
Theranostic 2D Tantalum Carbide (MXene).
Adv Mater. 2018 Jan;30(4). doi: 10.1002/adma.201703284. Epub 2017 Dec 11.
5
Two-Dimensional Tantalum Carbide (MXenes) Composite Nanosheets for Multiple Imaging-Guided Photothermal Tumor Ablation.
ACS Nano. 2017 Dec 26;11(12):12696-12712. doi: 10.1021/acsnano.7b07241. Epub 2017 Nov 27.
6
Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance.
Adv Mater. 2017 Sep;29(36). doi: 10.1002/adma.201702678. Epub 2017 Jul 25.
7
Hippocampal gamma-slow oscillation coupling in macaques during sedation and sleep.
Hippocampus. 2017 Nov;27(11):1125-1139. doi: 10.1002/hipo.22757. Epub 2017 Jul 12.
9
Novel amperometric glucose biosensor based on MXene nanocomposite.
Sci Rep. 2016 Nov 10;6:36422. doi: 10.1038/srep36422.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验