Suppr超能文献

二维 TiC MXene 用于高分辨率神经接口。

Two-Dimensional TiC MXene for High-Resolution Neural Interfaces.

机构信息

Center for Neurotrauma, Neurodegeneration, and Restoration , Corporal Michael J. Crescenz Veterans Affairs Medical Center , Philadelphia , Pennsylvania 19104 , United States.

School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14853 , United States.

出版信息

ACS Nano. 2018 Oct 23;12(10):10419-10429. doi: 10.1021/acsnano.8b06014. Epub 2018 Sep 12.

Abstract

High-resolution neural interfaces are essential tools for studying and modulating neural circuits underlying brain function and disease. Because electrodes are miniaturized to achieve higher spatial resolution and channel count, maintaining low impedance and high signal quality becomes a significant challenge. Nanostructured materials can address this challenge because they combine high electrical conductivity with mechanical flexibility and can interact with biological systems on a molecular scale. Unfortunately, fabricating high-resolution neural interfaces from nanostructured materials is typically expensive and time-consuming and does not scale, which precludes translation beyond the benchtop. Two-dimensional (2D) TiC MXene possesses a combination of remarkably high volumetric capacitance, electrical conductivity, surface functionality, and processability in aqueous dispersions distinct among carbon-based nanomaterials. Here, we present a high-throughput microfabrication process for constructing TiC neuroelectronic devices and demonstrate their superior impedance and in vivo neural recording performance in comparison with standard metal microelectrodes. Specifically, when compared to gold microelectrodes of the same size, TiC electrodes exhibit a 4-fold reduction in interface impedance. Furthermore, intraoperative in vivo recordings from the brains of anesthetized rats at multiple spatial and temporal scales demonstrate that TiC electrodes exhibit lower baseline noise, higher signal-to-noise ratio, and reduced susceptibility to 60 Hz interference than gold electrodes. Finally, in neuronal biocompatibility studies, neurons cultured on TiC are as viable as those in control cultures, and they can adhere, grow axonal processes, and form functional networks. Overall, our results indicate that TiC MXene microelectrodes have the potential to become a powerful platform technology for high-resolution biological interfaces.

摘要

高分辨率神经接口是研究和调节大脑功能和疾病相关神经回路的重要工具。由于电极被小型化以实现更高的空间分辨率和通道数,因此保持低阻抗和高信号质量成为一个重大挑战。纳米结构材料可以解决这一挑战,因为它们结合了高导电性、机械柔韧性,并可以在分子尺度上与生物系统相互作用。不幸的是,用纳米结构材料制造高分辨率神经接口通常既昂贵又耗时,而且不具有扩展性,这使得它们无法超越实验室台架。二维(2D)TiC MXene 具有在水溶液中分散体中非常高的体积电容、电导率、表面功能和可加工性的组合,这在碳基纳米材料中是独特的。在这里,我们提出了一种用于构建 TiC 神经电子器件的高通量微制造工艺,并展示了与标准金属微电极相比,其优越的阻抗和体内神经记录性能。具体来说,与相同尺寸的金微电极相比,TiC 电极的界面阻抗降低了 4 倍。此外,在麻醉大鼠大脑的多个时空尺度上进行的术中体内记录表明,TiC 电极的基线噪声更低、信噪比更高,并且对 60 Hz 干扰的敏感性降低,优于金电极。最后,在神经元生物相容性研究中,在 TiC 上培养的神经元与对照培养物中的神经元一样具有活力,并且它们可以附着、生长轴突过程并形成功能性网络。总体而言,我们的结果表明,TiC MXene 微电极有可能成为高分辨率生物接口的强大平台技术。

相似文献

1
Two-Dimensional TiC MXene for High-Resolution Neural Interfaces.二维 TiC MXene 用于高分辨率神经接口。
ACS Nano. 2018 Oct 23;12(10):10419-10429. doi: 10.1021/acsnano.8b06014. Epub 2018 Sep 12.
3
Gold nanograin microelectrodes for neuroelectronic interfaces.金纳米颗粒微电极用于神经电子接口。
Biotechnol J. 2013 Feb;8(2):206-14. doi: 10.1002/biot.201200219. Epub 2012 Nov 9.
4
Ultrasoft microwire neural electrodes improve chronic tissue integration.超软微丝神经电极可改善慢性组织整合。
Acta Biomater. 2017 Apr 15;53:46-58. doi: 10.1016/j.actbio.2017.02.010. Epub 2017 Feb 6.

引用本文的文献

2
Multifunctional bioelectronics for brain-body circuits.用于脑-体回路的多功能生物电子学。
Nat Rev Bioeng. 2025 Jun;3(6):465-484. doi: 10.1038/s44222-025-00289-3. Epub 2025 Mar 27.
6
MXenes as emerging materials to repair electroactive tissues and organs.MXenes作为用于修复电活性组织和器官的新兴材料。
Bioact Mater. 2025 Mar 3;48:583-608. doi: 10.1016/j.bioactmat.2025.01.035. eCollection 2025 Jun.

本文引用的文献

4
Theranostic 2D Tantalum Carbide (MXene).治疗诊断一体化二维碳化钽(MXene)。
Adv Mater. 2018 Jan;30(4). doi: 10.1002/adma.201703284. Epub 2017 Dec 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验