Suppr超能文献

一种多级 LC-HRMS 和 NMR 相关工作流程,用于推进食品组学研究:在橄榄中的应用。

A multilevel LC-HRMS and NMR correlation workflow towards foodomics advancement: Application in table olives.

机构信息

Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece.

Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece.

出版信息

Talanta. 2024 Dec 1;280:126641. doi: 10.1016/j.talanta.2024.126641. Epub 2024 Aug 10.

Abstract

Foodomics employs advanced analytical techniques to provide answers regarding food composition, authenticity control, marker identification and issues related to food quality and safety. Nuclear magnetic resonance (NMR) spectroscopy and chromatography hyphenated to mass spectrometry (MS) are the main analytical platforms used in this field. Nevertheless, they are rarely employed in an integrated manner, and even then, the contribution of each technique remains vague. Table olives (Olea europaea L.) are a food commodity of high economic and nutritional value with an increasing production tendency over the last two decades, which, however, suffers from extensive fraud incidents and quality determination uncertainties. Thus, the current attempt aims towards two axes with the first being the multilevel integration of LC-HRMS and NMR data of the same samples and table olives being the selected matrix. In more detail, UPLC-HRMS/MS-based analysis was compared at different stages within an untargeted metabolomics workflow with an NMR-based study and the complementarity of the two platforms was evaluated. Furthermore, statistical heterospectroscopy (SHY), rarely employed in foodomics, combining the spectroscopic with spectrometric datasets and aiming to increase the confidence level of annotated biomarkers was applied. Amongst these lines, the second parallel axis of this study was the detailed characterization of table olives' metabolome in search for quality markers considering the impact of geographical (from Northern to Southern Greece) and botanical origin (Kalamon, Konservolia, Chalkidikis cultivars), as well as processing parameters (Spanish, Greek). To that end, using deep dereplication tools including statistical methods, with SHY employed for the first time in table olives, different biomarkers, belonging to the classes of phenyl alcohols, phenylpropanoids, flavonoids, secoiridoids and triterpenoids were identified as responsible for the observed classifications. The current binary pipeline, focusing on biomarkers' identification confidence, could be suggested as a meaningful workflow not only in olive-based products, but also in food quality control and foodomics in general.

摘要

食品组学采用先进的分析技术,为食品成分、真实性控制、标志物鉴定以及与食品质量和安全相关的问题提供答案。核磁共振(NMR)光谱和与质谱(MS)联用的色谱是该领域主要的分析平台。然而,它们很少以综合的方式使用,即使使用了,每种技术的贡献也仍然模糊不清。食用橄榄(Olea europaea L.)是一种具有高经济和营养价值的食品商品,在过去二十年中,其产量呈上升趋势,但也遭受了广泛的欺诈事件和质量确定不确定性。因此,目前的尝试旨在两个方面,第一个方面是将 LC-HRMS 和 NMR 数据在多水平上整合到同一批样品中,选择食用橄榄作为所选基质。更详细地说,在非靶向代谢组学工作流程的不同阶段,将基于 UPLC-HRMS/MS 的分析与基于 NMR 的研究进行了比较,并评估了这两个平台的互补性。此外,还应用了很少在食品组学中使用的统计异谱学(SHY),将光谱学和光谱数据集结合起来,旨在提高注释生物标志物的置信水平。在这些方面,本研究的第二个平行轴是详细表征食用橄榄的代谢组,以寻找质量标志物,考虑到地理(从希腊北部到南部)和植物学起源(Kalamon、Konservolia、Chalkidikis 品种)以及加工参数(西班牙、希腊)的影响。为此,使用深度去重工具,包括统计方法,以及首次在食用橄榄中使用 SHY,鉴定了不同的生物标志物,属于苯丙醇、苯丙素、类黄酮、裂环烯醚萜和三萜类化合物,这些物质被认为是导致观察到的分类的原因。当前的二元流水线,侧重于鉴定生物标志物的置信度,可以作为一种有意义的工作流程,不仅在基于橄榄的产品中,而且在食品质量控制和食品组学中都具有广泛的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验