Suppr超能文献

一种通过结合通用机器学习势、通用性质模型和优化算法进行全空间逆材料设计的方法。

An approach for full space inverse materials design by combining universal machine learning potential, universal property model, and optimization algorithm.

作者信息

Cheng Guanjian, Gong Xin-Gao, Yin Wan-Jian

机构信息

College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), and Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China; Shanghai Qi Zhi Institute, Shanghai 200232, China.

Key Laboratory for Computational Physical Sciences (MOE), Institute of Computational Physical Sciences, Fudan University, Shanghai 200438, China; Shanghai Qi Zhi Institute, Shanghai 200232, China.

出版信息

Sci Bull (Beijing). 2024 Oct 15;69(19):3066-3074. doi: 10.1016/j.scib.2024.07.015. Epub 2024 Jul 15.

Abstract

We present a full space inverse materials design (FSIMD) approach that fully automates the materials design for target physical properties without the need to provide the atomic composition, chemical stoichiometry, and crystal structure in advance. Here, we used density functional theory reference data to train a universal machine learning potential (UPot) and transfer learning to train a universal bulk modulus model (UBmod). Both UPot and UBmod were able to cover materials systems composed of any element among 42 elements. Interfaced with optimization algorithm and enhanced sampling, the FSIMD approach is applied to find the materials with the largest cohesive energy and the largest bulk modulus, respectively. NaCl-type ZrC was found to be the material with the largest cohesive energy. For bulk modulus, diamond was identified to have the largest value. The FSIMD approach is also applied to design materials with other multi-objective properties with accuracy limited principally by the amount, reliability, and diversity of the training data. The FSIMD approach provides a new way for inverse materials design with other functional properties for practical applications.

摘要

我们提出了一种全空间逆材料设计(FSIMD)方法,该方法无需预先提供原子组成、化学计量和晶体结构,即可完全自动化针对目标物理性质的材料设计。在此,我们使用密度泛函理论参考数据来训练通用机器学习势(UPot),并通过迁移学习来训练通用体模量模型(UBmod)。UPot和UBmod都能够涵盖由42种元素中的任何元素组成的材料体系。与优化算法和增强采样相结合,FSIMD方法分别用于寻找具有最大内聚能和最大体模量的材料。发现NaCl型ZrC是具有最大内聚能的材料。对于体模量,确定金刚石具有最大值。FSIMD方法还用于设计具有其他多目标性质的材料,其精度主要受训练数据的数量、可靠性和多样性限制。FSIMD方法为具有其他功能性质的逆材料设计以用于实际应用提供了一种新途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验