Suppr超能文献

相似文献

1
Generative Deep Neural Networks for Inverse Materials Design Using Backpropagation and Active Learning.
Adv Sci (Weinh). 2020 Jan 9;7(5):1902607. doi: 10.1002/advs.201902607. eCollection 2020 Mar.
2
Machine Learning-Assisted Design of Material Properties.
Annu Rev Chem Biomol Eng. 2022 Jun 10;13:235-254. doi: 10.1146/annurev-chembioeng-092220-024340. Epub 2022 Mar 17.
3
Inverse molecular design using machine learning: Generative models for matter engineering.
Science. 2018 Jul 27;361(6400):360-365. doi: 10.1126/science.aat2663. Epub 2018 Jul 26.
4
Inverse Design of Materials by Machine Learning.
Materials (Basel). 2022 Feb 28;15(5):1811. doi: 10.3390/ma15051811.
5
Novel maximum-margin training algorithms for supervised neural networks.
IEEE Trans Neural Netw. 2010 Jun;21(6):972-84. doi: 10.1109/TNN.2010.2046423. Epub 2010 Apr 19.
6
Modern machine learning for tackling inverse problems in chemistry: molecular design to realization.
Chem Commun (Camb). 2022 Apr 28;58(35):5316-5331. doi: 10.1039/d1cc07035e.
7
Global Optimization of Dielectric Metasurfaces Using a Physics-Driven Neural Network.
Nano Lett. 2019 Aug 14;19(8):5366-5372. doi: 10.1021/acs.nanolett.9b01857. Epub 2019 Jul 15.
8
Perfect prosthetic heart valve: generative design with machine learning, modeling, and optimization.
Front Bioeng Biotechnol. 2023 Sep 15;11:1238130. doi: 10.3389/fbioe.2023.1238130. eCollection 2023.
9
Neural-Network-Biased Genetic Algorithms for Materials Design: Evolutionary Algorithms That Learn.
ACS Comb Sci. 2017 Feb 13;19(2):96-107. doi: 10.1021/acscombsci.6b00136. Epub 2017 Jan 9.
10
DANTE: Deep alternations for training neural networks.
Neural Netw. 2020 Nov;131:127-143. doi: 10.1016/j.neunet.2020.07.026. Epub 2020 Jul 28.

引用本文的文献

1
Anchor-controlled generative adversarial network for high-fidelity electromagnetic and structurally diverse metasurface design.
Nanophotonics. 2025 Jul 15;14(17):2923-2938. doi: 10.1515/nanoph-2025-0210. eCollection 2025 Aug.
2
Exploring Optimized Organic Fluorophore Search through Experimental Data-Driven Adaptive β‑VAE.
JACS Au. 2025 Jun 30;5(7):3082-3091. doi: 10.1021/jacsau.5c00052. eCollection 2025 Jul 28.
4
Characterization and Inverse Design of Stochastic Mechanical Metamaterials Using Neural Operators.
Adv Mater. 2025 Jul;37(29):e2420063. doi: 10.1002/adma.202420063. Epub 2025 Apr 21.
5
6
Machine learning-enabled forward prediction and inverse design of 4D-printed active plates.
Nat Commun. 2024 Jun 29;15(1):5509. doi: 10.1038/s41467-024-49775-z.
7
Current Advancement and Future Prospects: Biomedical Nanoengineering.
Curr Radiopharm. 2024;17(2):120-137. doi: 10.2174/0118744710274376231123063135.
9
Unleashing the Power of Artificial Intelligence in Materials Design.
Materials (Basel). 2023 Aug 30;16(17):5927. doi: 10.3390/ma16175927.
10
Material symmetry recognition and property prediction accomplished by crystal capsule representation.
Nat Commun. 2023 Aug 25;14(1):5198. doi: 10.1038/s41467-023-40756-2.

本文引用的文献

2
Accelerated Search and Design of Stretchable Graphene Kirigami Using Machine Learning.
Phys Rev Lett. 2018 Dec 21;121(25):255304. doi: 10.1103/PhysRevLett.121.255304.
3
Inverse molecular design using machine learning: Generative models for matter engineering.
Science. 2018 Jul 27;361(6400):360-365. doi: 10.1126/science.aat2663. Epub 2018 Jul 26.
4
Machine learning for molecular and materials science.
Nature. 2018 Jul;559(7715):547-555. doi: 10.1038/s41586-018-0337-2. Epub 2018 Jul 25.
5
Nanophotonic particle simulation and inverse design using artificial neural networks.
Sci Adv. 2018 Jun 1;4(6):eaar4206. doi: 10.1126/sciadv.aar4206. eCollection 2018 Jun.
6
Giga-voxel computational morphogenesis for structural design.
Nature. 2017 Oct 4;550(7674):84-86. doi: 10.1038/nature23911.
7
Evaluating the Visualization of What a Deep Neural Network Has Learned.
IEEE Trans Neural Netw Learn Syst. 2017 Nov;28(11):2660-2673. doi: 10.1109/TNNLS.2016.2599820.
8
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
9
Machine-learning approaches in drug discovery: methods and applications.
Drug Discov Today. 2015 Mar;20(3):318-31. doi: 10.1016/j.drudis.2014.10.012. Epub 2014 Nov 4.
10
Accelerating materials property predictions using machine learning.
Sci Rep. 2013 Sep 30;3:2810. doi: 10.1038/srep02810.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验