Suppr超能文献

基于深度学习的前列腺癌放疗计划CT图像上前列腺尿道新型自动分割技术的开发。

Development of deep learning-based novel auto-segmentation for the prostatic urethra on planning CT images for prostate cancer radiotherapy.

作者信息

Takagi Hisamichi, Takeda Ken, Kadoya Noriyuki, Inoue Koki, Endo Shiki, Takahashi Noriyoshi, Yamamoto Takaya, Umezawa Rei, Jingu Keiichi

机构信息

Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.

Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan.

出版信息

Radiol Phys Technol. 2024 Dec;17(4):819-826. doi: 10.1007/s12194-024-00832-8. Epub 2024 Aug 14.

Abstract

Urinary toxicities are one of the serious complications of radiotherapy for prostate cancer, and dose-volume histogram of prostatic urethra has been associated with such toxicities in previous reports. Previous research has focused on estimating the prostatic urethra, which is difficult to delineate in CT images; however, these studies, which are limited in number, mainly focused on cases undergoing brachytherapy uses low-dose-rate sources and do not involve external beam radiation therapy (EBRT). In this study, we aimed to develop a deep learning-based method of determining the position of the prostatic urethra in patients eligible for EBRT. We used contour data from 430 patients with localized prostate cancer. In all cases, a urethral catheter was placed when planning CT to identify the prostatic urethra. We used 2D and 3D U-Net segmentation models. The input images included the bladder and prostate, while the output images focused on the prostatic urethra. The 2D model determined the prostate's position based on results from both coronal and sagittal directions. Evaluation metrics included the average distance between centerlines. The average centerline distances for the 2D and 3D models were 2.07 ± 0.87 mm and 2.05 ± 0.92 mm, respectively. Increasing the number of cases while maintaining equivalent accuracy as we did in this study suggests the potential for high generalization performance and the feasibility of using deep learning technology for estimating the position of the prostatic urethra.

摘要

泌尿系统毒性是前列腺癌放射治疗的严重并发症之一,先前的报告显示前列腺尿道的剂量体积直方图与这类毒性相关。先前的研究主要集中在前列腺尿道的评估上,而前列腺尿道在CT图像中难以勾勒;然而,这些研究数量有限,主要集中在接受近距离放射治疗(使用低剂量率源)的病例,并未涉及外照射放疗(EBRT)。在本研究中,我们旨在开发一种基于深度学习的方法,用于确定适合接受EBRT的患者的前列腺尿道位置。我们使用了430例局限性前列腺癌患者的轮廓数据。在所有病例中,计划CT扫描时均放置了尿道导管以识别前列腺尿道。我们使用了二维和三维U-Net分割模型。输入图像包括膀胱和前列腺,而输出图像聚焦于前列腺尿道。二维模型根据冠状面和矢状面的结果确定前列腺的位置。评估指标包括中心线之间的平均距离。二维和三维模型的平均中心线距离分别为2.07±0.87毫米和2.05±0.92毫米。如我们在本研究中所做的那样,在保持同等准确性的同时增加病例数量,表明具有高泛化性能的潜力以及使用深度学习技术估计前列腺尿道位置的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba9d/11579160/8c87569f5bb5/12194_2024_832_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验