Suppr超能文献

通过聚类技术揭示全膝关节置换候选人群的不同运动学特征。

Unveiling distinct kinematic profiles among total knee arthroplasty candidates through clustering technique.

机构信息

Applied and Artificial Intelligence Institute (I2A), TELUQ University, Montreal, Quebec, Canada.

Electrical ad Computer Engineering Department, Lebanese American University, Byblos, Lebanon.

出版信息

J Orthop Surg Res. 2024 Aug 14;19(1):479. doi: 10.1186/s13018-024-04990-8.

Abstract

BACKGROUND

Characterizing the condition of patients suffering from knee osteoarthritis is complex due to multiple associations between clinical, functional, and structural parameters. While significant variability exists within this population, especially in candidates for total knee arthroplasty, there is increasing interest in knee kinematics among orthopedic surgeons aiming for more personalized approaches to achieve better outcomes and satisfaction. The primary objective of this study was to identify distinct kinematic phenotypes in total knee arthroplasty candidates and to compare different methods for the identification of these phenotypes.

METHODS

Three-dimensional kinematic data obtained from a Knee Kinesiography exam during treadmill walking in the clinic were used. Various aspects of the clustering process were evaluated and compared to achieve optimal clustering, including data preparation, transformation, and representation methods.

RESULTS

A K-Means clustering algorithm, performed using Euclidean distance, combined with principal component analysis applied on data transformed by standardization, was the optimal approach. Two unique kinematic phenotypes were identified among 80 total knee arthroplasty candidates. The two distinct phenotypes divided patients who significantly differed both in terms of knee kinematic representation and clinical outcomes, including a notable variation in 63.3% of frontal plane features and 81.8% of transverse plane features across 77.33% of the gait cycle, as well as differences in the Pain Catastrophizing Scale, highlighting the impact of these kinematic variations on patient pain and function.

CONCLUSION

Results from this study provide valuable insights for clinicians to develop personalized treatment approaches based on patients' phenotype affiliation, ultimately helping to improve total knee arthroplasty outcomes.

摘要

背景

由于临床、功能和结构参数之间存在多种关联,患有膝骨关节炎的患者的病情特征较为复杂。虽然该人群内存在显著的差异性,尤其是在全膝关节置换术的候选者中,但骨科医生对膝关节运动学越来越感兴趣,他们希望采用更个性化的方法来实现更好的结果和满意度。本研究的主要目的是确定全膝关节置换术候选者中的不同运动学表型,并比较识别这些表型的不同方法。

方法

使用在诊所跑步机行走过程中从 Knee Kinesiography 检查获得的三维运动学数据。评估和比较了聚类过程的各个方面,以实现最佳聚类,包括数据准备、转换和表示方法。

结果

使用欧几里得距离执行的 K-Means 聚类算法,结合应用于标准化后数据的主成分分析,是最佳方法。在 80 名全膝关节置换术候选者中确定了两种独特的运动学表型。这两种不同的表型将在膝关节运动学表现和临床结果方面存在显著差异的患者进行了区分,包括在 77.33%的步态周期中,正面特征的 63.3%和横面特征的 81.8%有明显的差异,以及疼痛灾难化量表的差异,突出了这些运动学变化对患者疼痛和功能的影响。

结论

本研究的结果为临床医生提供了有价值的见解,以便根据患者的表型归属制定个性化的治疗方法,最终有助于改善全膝关节置换术的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fed/11325613/9d2bc3e9ed61/13018_2024_4990_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验